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Predictor Combination in Binary Decision-Making Situations

Robert E. McGrath
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Professional psychologists are often confronted with the task of making binary decisions about individ-
uals, such as predictions about future behavior or employee selection. Test users familiar with linear
models and Bayes’s theorem are likely to assume that the accuracy of decisions is consistently improved
by combination of outcomes across valid predictors. However, neither statistical method accurately
estimates the increment in accuracy that results from use of additional predictors in the typical applied
setting. It was demonstrated that the best single predictor often can perform better than do multiple
predictors when the predictors are combined using methods common in applied settings. This conclusion
is consistent with previous findings concerning G. Gigerenzer and D. Goldstein’s (1996) “take the best”
heuristic. Furthermore, the information needed to ensure an increment in fit over the best single predictor

is rarely available.

Keywords: linear regression, Bayes’s theorem, predictive power, clinical decision making, heuristics

Professional psychologists are often faced with the practical task
of classifying people into one of at least two categories. Examples
include whether to implement a treatment, whether to hire a
person, or whether each of a series of diagnoses applies to an
individual. The practical need to dichotomize cases often exists
even when the variables used to make the decision are inherently
dimensional, though the dichotomization of dimensional data is a
problematic undertaking from a formal statistical perspective (e.g.,
Dwyer, 1996; MacCallum, Zhang, Preacher, & Rucker, 2002; but
see Farrington & Loeber, 2000). This paradox highlights the
importance of considering both practical considerations and formal
statistical issues when one intends data to reveal something about
real-world practices (McGrath, 2001).

For example, statistical methods familiar to applied psycholo-
gists tend to suggest that the accuracy of predictions is consistently
improved by combination of multiple valid predictors. This article
presents evidence that this is not necessarily the case, particularly
when the pragmatics of predictor combination for purposes of
classifying individuals in applied settings are taken into consider-
ation. It demonstrates that under certain common circumstances,
psychologists may be better served by basing their classification
on the best single predictor and ignoring additional sources of
information.

Statistical Methods Relevant to Predictor Combination

Two statistical methods commonly familiar to psychologists—
linear regression and Bayes’s theorem—can be taken to suggest
that additional predictors will consistently improve prediction.
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This section provides a brief review of each model and discusses
their limitations as a basis for such a conclusion in applied settings.

Linear Regression

Linear regression involves the identification of an optimal set of
weights for generation of an additive composite of predictors. It is
one of various computationally intensive methods that have been
developed for combining data from multiple predictors. Other such
methods are available—for example, classification trees, discrimi-
nant function analysis, neural networks, cluster analysis, boosting,
and methods based on receiver operating characteristic curves
(e.g., Friedman, Hastie, & Tibshirani, 2000; Hogarth & Karelaia,
2005; Swets, Dawes, & Monahan, 2000)—but linear regression is
clearly the method most familiar to psychologists and so has the
greatest influence on psychologists’ beliefs about the advantages
of multiple predictors.

The use of linear regression for combining information across
predictors in applied settings is often discussed in terms of incre-
mental validity (Hunsley & Meyer, 2003; Sechrest, 1963). Incre-
mental validity may be defined as the extent to which additional
predictors enhance the proportion of overlapping variance with the
criterion. Some form of hierarchical regression is the standard
statistical method for evaluation of the degree of incremental
validity provided by additional predictors, and some variant of the
correlation coefficient usually provides the corresponding effect-
size index.

Because this article focuses on dichotomous decisions, subse-
quent discussion of linear regression focuses on logistic regression.
Table 1 contains four examples of results from incremental valid-
ity studies that used logistic regression. Various statistics that
provide an analogue to the correlation coefficient are available for
logistic regression. SAS offers two, the Cox and Snell (1989)
generalized coefficient of determination (R*) and an adjusted ver-
sion that corrects for possible range restriction in R* (max R?;
Nagelkerke, 1991). Each example provides the incremental valid-
ity of adding two predictors, B and C, over predictor A. Subsequent
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Table 1
Examples of Hierarchical Logistic Regression Incremental
Validity Analyses

max max Amax
ARy 5 ARy 5 R’y aBC R%y apc ARy apc R%y apc
07 11 13 18 05 08
17 24 28 40 12 16
18 25 37 49 18 25
32 43 35 47 03 05

Note. R? is the generalized coefficient of determination (Cox & Snell,
1989). Max R? is an alternate version adjusted for possible range restriction
(Nagelkerke, 1991). AR*, g is the difference between R’y \pc and.
ARz‘{.A.

discussion focuses on cases of three predictors but at times ad-
dresses issues of two predictors.

In the first example in Table 1, adding B and C to A increases
the proportion of the variance of the criterion predicted by .06
according to the generalized coefficient and by .07 according to the
adjusted coefficient. An important mathematical attribute of both
statistics is that the coefficient cannot decrease as more predictors
are added. That is, the multiple correlation for a set of predictors
will always be at least equal to that of any subset of the predictors
included in the set. Including additional valid predictors always
enhances prediction (or at least does no harm). This attribute can
foster the belief that, when the costs of additional testing are
minimal and the results of linear regression can be considered
reliable (i.e., shrinkage has already been accounted for), it is
always desirable to increase the number of valid predictors.

Despite its familiarity, linear regression is rarely used as a
combination method in applied settings, for practical reasons.
Consider the conditions that must be met before linear regression
can be used as the basis for binary decisions:

1. A sample that is sufficiently large relative to the number
of predictors must be gathered to allow derivation of
reliable weights and a cut score for the predicted scores.

2. Any changes in the set of predictors will require a new set
of weights.

3. For optimal fit, future cases must reflect the same pop-
ulation as does the derivation sample.

4. In high-stakes decision-making situations, application of
the combination method to the individual may need to be
accomplished quickly.

It has been argued that in the case of multiple regression, the
first condition can be avoided by the method called equal weight-
ing or tallying (Dawes & Corrigan, 1974; Hogarth & Karelaia,
2005; Wainer, 1976). This method involves weighting those pre-
dictors positively correlated with the criterion by 1 and those
predictors negatively correlated with the criterion by —1 after they
have been standardized. Equal weighting can produce results su-
perior to multiple regression under circumstances in which shrink-
age is possible. However, application of this strategy to the case of
dichotomous decisions would still require identification of an

optimal cut score for the weighted combination of predictors and
standardizing statistics; such a requirement reintroduces the need
for a sizable derivation sample.

The second condition is unrealistic in applied settings in which
the battery of predictors is tailored to the respondent on the basis
of variations in the goals of the assessment, time constraints,
respondent limitations, or issues of cost. The third condition is an
untestable assumption in the individual case, and the fourth con-
dition suggests that the application of linear models may be par-
ticularly unwieldy in precisely those settings in which accuracy in
prediction is most important. Given the practical obstacles, test
users almost always rely on less intensive methods of data com-
bination in applied settings.

Bayes’s Theorem

A more practical option for combining predictors in applied
settings is referred to here as the vote-counting heuristic. If a
predictor is not inherently dichotomous, it is first dichotomized
with a cut score derived specifically for that predictor." The
decision is based on the majority outcome across predictors. This
heuristic is mathematically equivalent to tallying but has two
modifications that make implementation of the heuristic more
practical:

1. Each predictor is dichotomized as X— = 0 and X+ = 1
prior to aggregation.

2. The cut score for the aggregate is pragmatic rather than
optimized; it is based on the value that is half the max-
imum possible score.

The vote-counting heuristic should not be considered to be
specific to psychological evaluation. It is generally applicable to
settings in which decision making is based on standardized data-
gathering procedures. For example, medical professionals often
dichotomize outcomes on dimensional indicators (e.g., body tem-
perature or white blood cell count) according to whether they fall
within the normal or abnormal range and make a judgment based
on the preponderance of evidence.

Bayes’s theorem provides a second statistical method familiar to
most psychologists that can be used in conjunction with the vote-
counting heuristic to estimate the improvement in accuracy result-
ing from use of multiple predictors. As background to a discussion
of the application of Bayes’s theorem to vote counting, a classi-

! This practice violates a common recommendation for the use of local
cut scores over global or standard cut scores (e.g., Meehl & Rosen, 1955).
The recommendation is largely ignored in applied settings because it is
often considered impractical to generate local cut scores, for the same
reasons that impede applied use of linear regression. Also, local cut scores
create the uncomfortable possibility that a person classified one way in one
setting will merit reclassification in a subsequent setting. For example, an
individual declared suicidal in an inpatient setting might not meet criteria
for classification as suicidal at a later group-home placement because of a
change in local cut score, even though the test outcome is the same. Such
practices would be extremely problematic from a liability perspective. It is
also worth noting that Hsu (1985) found that local cut scores are not
necessarily superior to global cut scores, but the truth is that resistance to
local cut scores is more practical than it is statistical.
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Population (Y)

Targeted (Y+) Complement (¥-)
pX+Y+) PX+Y-)
Positive (X+) Sens: p(X+|Y+) 1 — Spec: p(X+|Y-) pX+)
Test Outcome PPP: p(Y+|X+) 1 —PPP: p(Y-|X+)
(X=4,B,0) PXY+) pO-Y)
Negative (X-) 1 — Sens: p(X-|Y+) Spec: p(X-|Y-) pX-)
1 — NPP: p(Y+|X-) NPP: p(Y-|X-)
BR: p(Y+) 1 -BR: p(Y-) CF: p(X+Y+) +

Figure 1.

pX-Y-)

The symbols displayed are used to represent various outcomes of a decision-making process and the

associated probabilities. The upper right and lower left cells indicate various ways to present the probabilities
associated with incorrect decisions; the upper left and lower right cells indicate the probabilities of correct
decisions. Sens = sensitivity; PPP = positive predictive power; Spec = specificity; NPP = negative predictive

power; BR = base rate; CF = correct fraction.

fication table (see Figure 1) is used to introduce some concepts
from probability theory relevant to the case in which both a
predictor and a criterion are dichotomous. The criterion variable Y
is a dichotomous indicator of whether an individual falls in the
targeted (Y+) or complement (Y—) population (e.g., whether the
person meets or does not meet standards for employment). This
criterion is predicted by dichotomized indicators X = A, B, and C,
on which a respondent may produce a positive outcome (X+),
predictive of membership in the targeted population, or a negative
outcome (X—). The probability of belonging to the targeted pop-
ulation can be referred to as p(Y+), though the more familiar term
base rate (BR) is used here instead. The probability of being
simultaneously a member of the targeted population and negative
on predictor B, which would be a prediction error, is symbolized
p(B—Y+). The conditional probability of a positive outcome on B
among members of the targeted population is symbolized
p(B+1Y+). The proportion of predictions that are correct is fre-
quently referred to in the psychological literature as the hit rate,
after Meehl and Rosen (1955), but this term has a different
meaning in the general statistical literature, so the more contem-
porary term correct fraction (CF) is used instead.

Table 2 provides computational formulas for several statistics
relevant to the analysis of prediction in 2 X 2 tables of this type,
often referred to as diagnostic efficiency statistics. Sensitivity

Table 2
Computational Formulas for Diagnostic Efficiency Statistics
Probability
Statistic represented Formula
Sens p(X+|Y+) p(+Y+) _ pX+Y+)
pX+Y+) + p(X—Y+)  p(Y+)
Spec  p(X—|Y-) pX—=Y—) _pX—Y-)
pX—Y—) + p(X+Y—) p(Y—)
PPP  p(Y+[X+) pX+YH) _pX+YH)
pX+Y+) + p(X+Y—) pX+)
NPP  p(Y—|X-) pX—Y-) _pX—Y-)
pX—Y—) + pX—Y+)  p(X—)
CF pX+Y+ or X—Y—)  p(X+Y+) + p(X—Y—)

Sens = sensitivity; Spec = specificity; PPP = positive predictive power;
NPP = negative predictive power; CF = correct fraction.

(Sens) is the probability of a positive test result given membership
in the targeted population, or p(X+1Y+). Specificity (Spec) is the
probability of a negative result within the complement population,
or p(X—1Y—). These statistics reflect the probability of a correct
decision within each population.

Positive predictive power (PPP), also referred to as the positive
predictive value, is the probability the individual is a member of
the targeted population, given a positive result, p(Y+1X+), and
negative predictive power (NPP) is the corresponding statistic
concerning correct outcomes among individuals who are negative
on the predictor, p(Y—1X—). These statistics reflect the probability
of a correct decision within each test outcome.

Sens and Spec have a statistical advantage over predictive
power statistics in terms of sampling variability. Sens and Spec
vary as a function of BR, at least under certain circumstances
having to do with the causal model explaining the relationship
between predictor and criterion (Choi, 1997). However, they tend
to vary less than PPP and NPP, because predictive power is a
direct function of the BR, Sens, and Spec. Consider the follow-
ing restatement of the formulas for PPP and NPP for a given
predictor, X:

PpP. — BR X Sensy 1
X" (BR X Sensy} + {(1 — BR) X (1 — Specy)} M

(1 — BR) X Specy
NPPy = 2)

{(1 = BR) X Specy} + {BR X (1 — Sensy)}

These formulas indicate that, even if Sens and Spec remain con-
stant, PPP will increase and NPP will decrease as the BR increases
(see Meehl & Rosen, 1955). As a result, they demonstrate sub-
stantially greater sampling variability as a function of BR than do
Sens or Spec (Brenner & Gefeller, 1997).

Even so, predictive power is often of greater interest than are
Sens and Spec in applied settings, because the results are directly
relevant to circumstances in which a conclusion must be drawn
about the respondent’s population membership (Y) on the basis of
test results (X). As suggested in the preceding discussion of di-
chotomizing dimensional indicators, practical considerations are
not always coincident with the optimal statistical approach.

Equations 1 and 2 are also interesting because they represent
restatements of Bayes’s theorem in terms of the symbols intro-
duced here. From a Bayesian perspective, BR can be treated as the
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Y Y
+ - + -
y + | p(4+Y+)=.07 | p(4+Y-)= 27 4 " pA+Y+)=.07 | p(4+Y-)= .27
- | p(4-Y+)=.03 | p(4-Y-)=.63 - | p(4-Y+)=.03 | p(4-Y-)=.63
p(Y+)=.10 p(Y-)=.90 p(Y+)=.10 p(Y-)=.90
p(Y+]A+) =.07/(.07 + .27) = .21 p(Y+|4+)=.07/(.07 + .27) = .21
Y Y
+ - + -
B + | p(B+Y+)=.14 | p(B+Y-)= .24 B + | p(B+Y+)=.14 | p(B+Y-) = .24
- | p(B-Y+)=.06 | p(B-Y-)=.56 - | p(B-Y+)=.06 | p(B-Y-)=.56
p(Y+) =21 p(Y-)=.79 p(Y+) =21 p(Y-)=.79
p(Y+HA+B+)=.14/(.14 + 24) = .38 p(Y+|4+B-) =.06/(.06 + .56) = .10
Y Y
+ - + -
c + | p(C+Y+)= 26 | p(C+Y-)=.19 c + | p(C+Y+) = .07 | p(C+Y-)= .27
- | p(C-YH)=.11 | p(C-Y-)= 44 - | p(C-Y+)=.03 | p(C-Y-)=.63
p(Y+)=.38 p(Y-)=.62 p(Y+)=.10 p(Y-)=.90
p(Y+|A+B+C+)=.26/(.26 + .19) = .59 p(Y+|A+B-C+)=.07/(.07 + .27)= 21
(a) (b)

Figure 2. Two examples of the iterative application of Bayes’s theorem to the estimation of PPP. (a)
Computing the probability of membership in the targeted population (Y+) if A, B, and C are all positive. A
positive outcome on A increases the probability of Y+ from .10 to .21, of a positive outcome on B from .21 to
.38, and of a positive outcome on C from .38 to .59. (b) Computing the probability of membership in the targeted
population (Y+) if A and C are positive but B is negative. Notice that the results for A and B cancel each other.

prior probability of membership in the targeted population, that is,
the probability of membership in the absence of additional infor-
mation from the indicator. PPP represents the corresponding pos-
terior probability (i.e., the probability of membership in the tar-
geted population after a positive outcome has been found on a
predictor). Similarly, p(Y—) is the prior probability of membership
in the complement population and NPP is the posterior probability,
given a negative outcome on X.

One implication of Bayes’s theorem is that, if X is a valid
predictor of Y, a positive outcome on X will result in a posterior
probability of membership in Y+ (PPP) that is greater than the
prior probability (BR). In other words, a positive outcome should
increase one’s confidence that the individual is a member of the
targeted population.? A reasonable extrapolation is that the itera-
tive use of multiple predictors should incrementally improve PPP
to the extent that the respondent produces positive results on each
predictor (Waller, Yonce, Grove, Faust, & Lezenweger, 2006).
Again, the statistic can be taken as implying that more is almost
always better.

The application of Bayes’s theorem to the case of multiple
dichotomous predictors is demonstrated in Figure 2. In these
examples, BR = .10 and Sensy = Specxy = .70 for all three
predictors. The figure’s left panel demonstrates the results for case
A+B+C+, in which the respondent generated positive outcomes
on all three predictors. A positive outcome on A suggests that the
probability of membership in the targeted population is .21. When
this value is used as the new prior probability of membership in the
population, a positive outcome on B raises that value further to .38.
A third positive outcome on C raises the posterior probability of
membership in the targeted population to .59.

Three comments are worth making about the application of
Bayes’s theorem to vote counting. First, finding that all three

outcomes were positive justifies assigning greater confidence to
the assertion that the respondent is a member of the targeted
population than does finding one positive outcome, but it would
probably surprise many applied test users that there is still such a
sizable probability (.41) that the respondent is not a member of that
population. This finding reflects the low initial BR, so that even a
substantial increase in the probability of membership in the tar-
geted population does not approach certainty. The tendency to
overestimate the confidence afforded by test results when the
initial BR is ignored has been noted many times (e.g., Meehl &
Rosen, 1955; Wiggins, 1972), but it continues to bedevil psycho-
logical (and medical) practice.

Second, it is worth noting that the enhancement of diagnostic
efficiency resulting from the use of multiple predictors varies
depending on the pattern of outcome across predictors. The right
panel of Figure 2 represents the case in which predictor B is
inconsistent with the other two predictors. As these three predic-
tors are equivalent in validity, the divergent outcome for B offsets
exactly the increment in PPP due to C, so the overall result is no
better than that from A alone. When the predictors differ in their

2 Following Meehl and Rosen (1955), expository writing on diagnostic
efficiency for psychologists often notes that in cases where the BR is
extremely low or high, use of the test may result in a lower CF than does
“betting the base rate” (i.e., always predicting that the respondent is a
member of the modal population; Hsu, 1985; Waller, Yonce, Grove, Faust,
& Lezenweger, 2006). Although this is technically true, betting the BR is
unacceptable in applied settings for very practical reasons. Consider the
potential consequences for a clinical psychologist who refuses to predict
that anyone is at risk of committing suicide because, given the very low BR
for suicide, this practice results in the best CF.
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Sens and Spec, each pattern of outcomes can be associated with a
unique value for PPP or NPP.

Finally, the estimate of predictive power resulting from the
application of Bayes’s theorem to the vote-counting heuristic is
very likely to be wrong. An extreme example demonstrates why
this would be the case. Suppose that predictors A, B, and C all
correlate perfectly. If so, the information about Y provided by each
predictor is redundant and the posterior probability of membership
in the targeted population is still only .21, even if all three test
outcomes are positive. The iterative application of Bayes’s theo-
rem produces inaccurate results because it ignores dependencies
among the predictors (Katsikopoulos & Martignon 2006; see also
Waller et al., 2006).%

Direct Computation of Probabilities

A more accurate method of determining the effectiveness of the
vote-counting heuristic involves computation of the overall prob-
ability of a correct decision, given a positive outcome (PPP) or a
negative outcome (NPP), on the basis of the majority of test
outcomes. For example, the overall PPP in the three-predictor case
can be generated by determining the proportion of cases in which
at least two of the predictors are positive that involve members of
the targeted population.

This approach was first considered in the context of the two-
predictor case. This case immediately presents a problem for the
vote-counting heuristic. If both predictors are positive or both
predictors are negative, the majority decision is clear. The decision
becomes uncertain when A is positive and B is negative or vice
versa. One reasonable heuristic for breaking the tie suggests a bias
in favor of the predictor with the higher level of criterion-related
validity; this option has been described, for example, by Ganellen
(1996, pp. 72-73). That is, if ry, > ryp, the decision is positive
if both A and B are positive or A alone is positive and is negative
if both A and B are negative or A alone is negative.* Although this
rule seems to be intuitively reasonable and may well reflect what
test users do in applied settings, an analysis of the implications of
this strategy for PPP and NPP produces a surprising result. Assume
that A is the more valid predictor. If so, the heuristic suggests that
if A is positive the decision based on both predictors will always be
positive, whereas if A is negative the two-predictor decision will
always be negative. In other words, the diagnostic efficiency of
combining A and B is no different than is the diagnostic efficiency
of using A alone. This suggestion may seem counterintuitive,
because the PPP for the case in which both A and B are positive
should be greater than the PPP for either A or B alone, if it is
assumed that A and B do not correlate so highly that they are
essentially redundant. However, this gain is offset by the lower
PPP for the case in which A is positive but B is negative or vice
versa. The same pattern holds for NPP and HR. The point is
demonstrated mathematically in the Appendix.

If the decision is the same regardless of the outcome on B, then
B adds nothing but psychological comfort to the overall predictive
power of the assessment. What seemed to be a reasonable, rela-
tively complete, and practically useful heuristic for the integration
of results from two predictors offers no incremental validity over
the predictor that is awarded dominance for purposes of tie break-
ing. This conclusion holds even if the second predictor demon-
strates incremental validity according to hierarchical regression.

Application of the vote-counting heuristic is more straightfor-
ward in the three-predictor case. One reasonable option would be
to declare the individual positive when at least two out of three
predictors are positive and negative when at least two of the three
predictors are negative. An important variant of this heuristic is
commonly used in medical diagnostics, when two tests are admin-
istered (or the same test is administered twice) and a third is
administered as a tiebreaker if they disagree.

The analytic development of this heuristic is provided in the
Appendix, and the results are equally unintuitive. If predictor A is
more valid than predictors B and C, the analysis demonstrates it
would not be unreasonable to find that the PPP, NPP, and HR for
A alone are greater than are the corresponding values based on
combining all three predictors. More specifically, if
p(A+B—C—-Y+) > p(A—B+C+Y+), or p(A—B+C+Y—) >
p(A+B—C—Y—), or both are true, then A by itself will outperform
the vote-counting heuristic on the basis of all three predictors. This
finding suggests an alternative heuristic for applied decision mak-
ing, which is referred to as the best single predictor (BSP).

The conclusion that the BSP can outperform multiple predictors
echoes similar conclusions drawn concerning Gigerenzer and
Goldstein’s (1996) “take the best” (TTB) heuristic, which they
presented as one method people use for comparison of pairs of
objects or options when time and/or information is limited. Be-
cause TTB was developed as a model of naturalistic decision
making and BSP is proposed as a model for decision making in
more formal testing situations, TTB differs from BSP in several
important ways. TTB specifically describes a method for predict-
ing ordinal placement within pairs of objects, whereas BSP is a
method for predicting dichotomous placements of objects one at a
time. Gigerenzer and Goldstein proposed that the first cue used in
TTB is always recognition of the options and that the tendency is
to reject those options unfamiliar to the decision maker. Presum-
ably, all tests used will be familiar to the test user. Finally, TTB
incorporates the possibility that in a particular comparison, the best
single environmental cue may not provide a clear preference for
one object over the other, in which case the decision maker is
expected to proceed through additional cues until a decision is
possible. In contrast, BSP relies on a dichotomous predictor, so
placement on the basis of a single predictor is always possible.

Despite the differences, there are enough similarities that evi-
dence concerning the accuracy of TTB should provide some sup-
port for the potential of BSP. In circumstances in which informa-
tion is limited, TTB is often as effective as or more effective than
methods based on linear regression and Bayesian methods as a
basis for decision making (Gigerenzer, Czerlinski, & Martignon,

3 In recent years, the study of Bayesian networks has allowed researchers
to consider dependencies among predictors when they estimate posterior
probabilities (e.g., Almond, DiBello, Moulder, & Zapata-Rivera, 2007).
However, this method is even more computer intensive than is linear
regression. Furthermore, as the focus here is on those statistical models that
contribute to the presumption among psychologists that more predictors is
always better, Bayesian networks will not be considered further.

4 This heuristic is still technically incomplete, as it ignores the case in
which ry, = ryg. This case is probably rare enough that it deserves to be
relegated to a footnote, but it could still be addressed by, for example,
randomly awarding precedence to A or B. So long as one predictor is
treated as dominant, the conclusions drawn in the text remain valid.
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2002; Hogarth & Karelaia, 2005; Martignon & Laskey, 1999). To
evaluate whether the same was true for BSP, the researcher created
a series of data simulations to compare the various approaches that
have been reviewed.

Generating Simulations

The simulations were created with an algorithm intended to
sample from the universe of combinations of dichotomous predic-
tors and criteria that could reasonably occur in well-designed
applied settings. Each simulation was based on a set of 16 prob-
abilities drawn from two 2 X 2 X 2 contingency tables; each table
represented one of the two criterion populations. The first cell of
the first table represented the probability that all three predictors
were positive in the targeted population, or p(A+B+C+1Y+). The
other seven cells in the table reflected conditional probabilities for
the other possible combinations of predictor outcomes, given
membership in the targeted population. The second table reflected
conditional probabilities for the complement population.

The probability for each cell was iteratively increased from 0 to
.80 by .10. The BR was similarly set to p(Y) = .02, .10, .30, and
.50. BR values > .50 were omitted, as they would have simply
mirrored the results for smaller BRs, with PPP and NPP switched.
When the BR and the 16 conditional probabilities were used, it was
possible to compute the diagnostic efficiency statistics for each
predictor, the correlation between each predictor and the criterion,
and the correlations between the predictors. Simulations were
eliminated if they failed to meet any of the following criteria:

1. The sum of the eight probabilities within each of the two
tables equaled 1.0.

2. The sum of the probabilities that determined the Sens for
each of the three predictors fell within the interval .50 =
Sensy = .90.

3. For each of the three predictors, .50 = Specy = .90.
4. For each predictor, either Sensy or Specx was > .50.

5. Correlations with the criterion fell in the interval .10 =
ryx = .70.

6. Correlations between predictors fell in the interval 0 =
ryx = .70.

7. rya = ryp and ryg = ryc.

The first criterion restricted the simulations so they were con-
sistent with the mathematical requirements for conditional proba-
bility tables. Criteria 2—6 were used to limit the simulations to the
types of outcomes likely to occur in well-designed applied settings.
The last criterion assured that predictors were ordered from most
to least correlated with the criterion. This process generated
186,301 unique simulations.

For each simulation, logistic regression was computed for pre-
dictor A and for all three predictors with SAS Version 9.1. In
addition to the correlational statistics described earlier, the re-
searcher generated a classification table that assumed a prior
probability equal to BR. Results from this table were used to

generate estimates of PPP, NPP, and CF for the case in which three
predictors are combined.

The Bayesian estimate of CF for three predictors was computed
with procedures described by Waller et al. (2006). To generate an
overall Bayesian estimate of PPP, the researcher used the same
procedures to compute the PPP for each combination of test
outcomes that would lead to a positive prediction according to the
vote-counting heuristic (at least two of three predictors positive).
These PPPs were weighted by the probability of that combination
occurring and were averaged. The same process was used to
generate the Bayesian estimate of NPP.

Equations A7, A9, and All (see the Appendix) were used to
directly compute diagnostic efficiency statistics for the three-
predictor case. Finally, to evaluate the BSP heuristic, the re-
searcher determined the diagnostic efficiency of predictor A alone.

Results

Descriptive statistics for the simulations may be found in Table
3. Results are presented for regression-based correlational statis-
tics. The table also contains diagnostic efficiency statistics gener-
ated with four methods: the BSP heuristic and logistic regression,
as well as the application of Bayes’s theorem and direct compu-
tation to the vote-counting heuristic. For logistic regression, the
mean value for the two correlational statistics is provided for
predictor A and for all three predictors combined.

The findings were generally consistent with expectation. The
addition of B and C increased the mean proportion of variance
predicted for both the generalized coefficient and the adjusted
version. The proportion of variance accounted for increased as the
BR approached .50 (see McGrath & Meyer, 2006). For the BSP
heuristic, correlations between CF and correlational statistics were
higher when the latter was based on one predictor rather than three,
whereas the reverse was true for the other classification methods
based on three predictors.

One unexpected finding was the relatively low correlations
between CF based on logistic regression and the correlational
statistics. These correlations were substantially lower than were
those for CF estimates based on the BSP heuristic or Bayes’s
theorem. This finding seemed to be a function of the differential
effects of BR on the correlational statistics versus CF derived via
logistic regression. After BR had been partialed, the correlations
between CF and the correlational statistics increased to a level
consistent with those for direct computation. The finding suggests
that expectations about the value of additional predictors derived
from literature on incremental validity may not generalize even to
regression-based diagnostic efficiency statistics.

In the remainder of Table 3, comparisons are organized by
diagnostic efficiency statistic.’ As expected, mean statistics de-
rived with logistic regression and Bayes’s theorem were consis-
tently higher than were those based on direct computation or the
BSP heuristic. However, their improvement over BSP was not
substantial, and mean values were consistently larger for BSP than

5 In 5,523 simulations with low BR, logistic regression did not identify
any cases as positive. Statistics presented in Tables 3 and 4 were computed
twice, once setting the PPP in these cases to 0 and once setting it to
missing. The exclusion of those simulations had no effect on the interpre-
tation of the results, so the tables present results based on all simulations.
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Table 3
Descriptive Statistics
Correlations
Method and predictor M SD BR BSP LR Bayes DC
LR*
R*y A 21 .09 17 .69 22 .58 A48
2 ABC .30 13 12 .63 .30 .67 .56
max R%y .29 12 —.01 81 .38 .68 52
Amax Ry spc 43 18 —.09 .73 49 77 .59
BSP .68 .16 .81
LR .79 20 .00 21
Bayes .69 15 78 91 .23
DC .62 .20 .68 78 .23 .87
NPP
BSP .79 11 —.80
LR .80 A1 —.61 74
Bayes .80 .10 —.81 91 71
DC .76 13 =75 .79 .69 .87
CF
BSP 5 .07 —.37
LR .80 .10 —.60 .59
Bayes 77 .07 —.37 .80 .56
DC .70 .10 —.04 .54 34 71
Note. BR = base rate; BSP = best single predictor (predictor A alone); LR = logistic regression; DC = direct computation; PPP = positive predictive

power; NPP = negative predictive power; CF = correct fraction.
# Correlations for logistic regression are with correct fraction.

for direct computation. In other words, the BSP on average gen-
erated diagnostic efficiency statistics almost as good as those
based on combinations of three predictors and better than the
actual diagnostic efficiency associated with the popular vote-
counting heuristic. BSP diagnostic efficiency statistics also tended
to correlate well with those statistics resulting from the combina-
tion of three predictors.

The correlation matrices provided in the table highlight the impor-
tant role of BR in diagnostic efficiency. Excluding logistic regression,
BR alone accounted for 46%—66% of variability in PPP and NPP.
Because these effects are in opposite directions, the finding that their
combined effect on the HR was attenuated is not surprising.

Table 4 contains the results of direct comparisons with BSP. The
top panel is based on all simulations. For reference purposes, the
first two columns of statistics include information about the incre-
mental validity of three predictors when compared with one pre-
dictor according to logistic regression. The mean increments in the
correlational statistics are restatements of the information in Table
3. Across simulations, none were associated with a decrement in
effect size when the set of predictors was increased from one to
three, and only .02% remained the same. It is worth noting that
these results ignore the potential for shrinkage. Under that condi-
tion, linear regression correlational statistics consistently suggest
an improvement in fit over the BSP.

The results are very different when diagnostic efficiency is consid-
ered. Though logistic regression and the application of Bayes’s the-
orem to the vote-counting heuristic both were associated with a mean
increase in all three diagnostic efficiency statistics, the use of three
predictors was associated with a decline in diagnostic efficiency in
14%—43% of comparisons with BSP. The results were substantially
poorer for the direct computation of diagnostic efficiency. Across the
three statistics examined, BSP did at least as well as three predictors
in 70% or more of the simulations.

To demonstrate the conclusions drawn earlier about the circum-
stances under which three predictors would prove better than one,
the researcher repeated the analyses using only those simulations
in which p(A-B+C+Y+) = pA+B—C—Y+) and
p(A+B—C—Y—) = p(A—B+C+Y—). The results are given in the
lower panel of Table 4. This restriction generally enhanced the
increment in fit resulting from use of three predictors. As expected,
this enhancement was particularly evident for direct computation.
This finding eliminated simulations in which the use of three
predictors reduced diagnostic efficiency.

Unfortunately, the joint probabilities one needs to determine
whether multiple predictors combined via vote counting will im-
prove over a single predictor are not available to test users. To
offer some guidance on circumstances in which the vote-counting
heuristic can potentially offer some benefit over the BSP heuristic,
the study next addressed the question of whether it is possible to
identify circumstances in which additional predictors are likely to
increase diagnostic efficiency by using commonly available sta-
tistics. For this purpose, it was assumed that the following statistics
would be available to a test user or at least estimable: BR, the
correlation of each predictor with the criterion, and the correlations
between the predictors. Simulations were dichotomized according
to whether APPP for direct computation was > 0 versus = 0. The
same was done for NPP and HR. Point-biserial correlations were
then computed with the statistics assumed to be available, as well
as various combinations of those statistics based on similar anal-
yses by Hogarth and Karelaia (2005). The largest point—biserial
correlations were associated with the criterion-related validity co-
efficient for the least valid predictor, ry, varying between .26 and
.34. The best cut scores proved to be .393 for PPP, .40 for NPP,
and .41 for HR.

On the basis of these results, it would be reasonable to suggest
adding predictors if the validity coefficient for the least valid
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Table 4

Improvement Over Best Single Predictor (BSP)

LR APPP ANPP ACF

Correlational
statistic AR? Amax R? LR Bayes DC LR Bayes DC LR Bayes DC
M 0.09 0.14 0.11 0.01 —0.05 0.01 0.13 —0.03 0.05 0.02 —0.05
SD 0.07 0.10 0.22 0.07 0.12 0.08 0.23 0.08 0.08 0.04 0.09
<0 (%) 0.00 0.00 30.23 38.54 67.31 43.48 35.73 60.48 13.66 33.86 63.88
=0 (%) 0.02 0.02 12.99 1.62 9.40 11.52 0.53 10.38 33.10 2.99 15.90
>0 (%) 99.98 99.98 56.78 59.84 23.28 45.00 63.75 29.14 53.24 63.15 20.23

p(A—B+C+Y+) = p (A+B—C—Y+) and p (A+B—C—-Y—) =p (A—B+C+Y—)*

M 0.12 0.17 0.12 0.04 0.07 0.03 0.09 0.03 0.06 0.04 0.05
SD 0.08 0.11 0.19 0.06 0.10 0.07 0.18 0.04 0.08 0.03 0.05
<0 (%) 0.00 0.00 23.33 21.19 0.00 23.01 37.84 0.00 8.08 13.41 0.00
=0 (%) 0.02 0.02 10.34 1.63 37.65 8.45 0.58 37.67 26.94 2.28 37.65
>0 (%) 99.98 99.98 66.33 77.18 62.35 68.54 61.59 62.33 64.98 84.31 62.35

Note. In each case, results based on three predictors are compared with results from the BSP. LR = logistic regression; PPP = positive predictive power;

NPP = negative predictive power, CF = correct fraction; DC = direct computation.

AN = 44,123 simulations.

predictor is .40 or higher. This validity coefficient may strike the
reader as improbably high for the least valid of three predictors in
psychological settings. It should also be noted that the CFs based
on this heuristic varied between .70 and .78. In particular, 57% or
more of simulations in which additional predictors were useful
were misclassified when the cut score of .40 was used. Finally, the
test user must consider the costs of collecting additional tests for
this minimal payoff. It would seem then that additional predictors
are only desirable when they demonstrate relatively high validity
and relatively low cost.

Discussion

When reading the literature on applied assessment, one can
occasionally find warnings that more information is not necessar-
ily better than less (e.g., Faust, 1989). Even so, when charged with
making decisions that have potentially life-altering consequences,
psychologists and other users of standardized testing procedures
cannot be faulted for associating a greater sense of subjective
comfort with larger amounts of information. This association is
particularly apt given familiar statistical methods (e.g., linear re-
gression and Bayes’s theorem) that reinforce this belief. In fact,
linear regression and Bayesian methods in general provide an
optimal approach to quantitative prediction under optimal circum-
stances. What is one to do, though, when conditions are subopti-
mal, in particular, when information is incomplete about whether
each individual is in fact a member of the population used to
generate the statistical model? The results of these analyses sug-
gest that the BSP according to zero-order correlation with the
criterion can be a better option than is the vote-counting heuristic
in cases of three predictors.

An important question to consider is how often in practice the
conditions are met under which BSP would trump vote counting.
Unfortunately, there is no way to answer this question, because the
information about the relative size of certain key joint probabilities
is never available in practice. The simulations that served as the
basis for the outcomes in Tables 3 and 4 sampled from the array of
possible real-world scenarios but were not weighted according to

the probability of those scenarios. Furthermore, because they per-
mit the correlations between variables to be as large as .70, the
rules used to identify acceptable simulations can be faulted for
including too many cases in which the relationships between
variables are unusually high. This is particularly true in the case of
dichotomous variables, because dichotomization tends to attenuate
the size of correlations (MacCallum et al., 2002). The fact that two
thirds of the simulations demonstrated a decrement in diagnostic
efficiency when vote counting was used instead of BSP does not
imply that the same would be true in two thirds of applied testing
situations. It should raise serious concerns about the possibility of
a decrement in any testing situation, however.

As noted previously, the statistics that are likely to be available
to the test user are not particularly helpful for determining whether
additional predictors will contribute to diagnostic efficiency. An
example of this point is provided in Table 5. Three simulations are
presented that are equivalent on BR and the six zero-order corre-
lations. In the first case, the proportion of cases in which A and Y
are positive but B and C are negative is larger than is the propor-
tion of cases in which all predictors but A are positive. The result
is a decline in all three diagnostic efficiency statistics when B and
C are added to A. In the second case, the difference between the
first pair of joint probabilities is offset by the difference between
the second pair. In this case, PPP is reduced but NPP increases and
HR is stable. In the third case, the probability of B, C, and Y being
negative is higher than is the probability that only A and Y will be
negative; this results in an increase in all three diagnostic effi-
ciency statistics when B and C are considered. The correlations are
the product of the 16 joint probabilities and BR; thus, the corre-
lations are equivalent across simulations, because the differences
between the joint probabilities listed in the table are offset by
differences in other joint probabilities.

This article does not really address utility issues as they apply to
practical decision making, but the findings raise serious questions
about the “more is better” philosophy, at least in the case of two to
three predictors. The analysis offered for the three-predictor case
in the Appendix does suggest that as the number of predictors is
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Table 5
Sample Simulations
BSP DC
PA+B—C—Y+) p(A— B+C+Y+) PA—B+C+Y—) PA+B—C—Y—) PPP NPP CF PPP NPP CF
0.20 0.10 0.00 0.00 0.67 0.75 0.70 0.60 0.60 0.60
0.00 0.15 0.15 0.00 0.75 0.67 0.70 0.64 0.83 0.70
0.00 0.00 0.10 0.20 0.67 0.75 0.70 0.80 0.80 0.80

Note. In each simulation, base rate = .50, ry, = 408, ryg =

314, rye = 302, rapg = 171, rpae = 123, and rge = .390. BSP = best single predictor

(predictor A alone); DC = direct computation; PPP = positive predictive power; NPP = negative predictive power, CF = correct fraction.

expanded further, to four to five predictors per criterion, the
probability that a single predictor will prove equal or superior to
the vote-counting method declines substantially. However, one
must consider the issue of cost when using so many predictors for
a single criterion.

It should be noted that heuristic test aggregation in applied
settings can take more complicated forms than vote counting. One
common alternative modifies the interpretation on the basis of
unique characteristics of each predictor. For example, a positive
outcome on a valid performance-based measure of thought disor-
der combined with a negative outcome on a self-report measure of
the same construct might be interpreted as evidence of a lower
level disorder than full-blown psychosis or of a lack of insight into
the oddity of one’s thinking. Such an approach could potentially
provide more accurate information than could the purely statistical
methods discussed here. It also offers some insight into why
practitioners often prefer broadband scales that are sensitive to
multiple related psychological constructs (Cronbach & Gleser,
1957). In employee development or clinical settings, inconsisten-
cies in outcomes on such measures can be perceived as the starting
point for a more fine-grained analysis of the respondent.

Although this approach to aggregating inconsistent test findings
can produce intriguing conclusions, it demonstrates a troubling
similarity with ad hoc approaches to explaining inconsistent results
in significance testing. For example, Schmidt (1996) hypothesized
that the use of post hoc explanations based on moderator variables
to understand inconsistent outcomes across significance tests,
rather than treatment of those inconsistencies as a logical outcome
of insufficient power, tends to result in overly complex interpre-
tations of findings. This unnecessary complexity in turn interferes
with the accumulation of knowledge in psychology. Similarly, the
ad hoc approach that modifies the interpretation of the tests when
results seem inconsistent overlooks the possibility that such dis-
parities are due to random variation in indicator outcomes. The
result can lead to overly complex and incorrect person descrip-
tions. This analysis is not intended to suggest that the ad hoc
approach to integration of inconsistent outcomes is necessarily
invalid, just as Schmidt could not be accused of claiming that
differences in outcomes across significance tests never occur be-
cause of moderators. It does suggest that test users may be insuf-
ficiently skeptical about the modified interpretation of tests as a
means of explaining inconsistencies in outcomes across multiple
measures. This problem is particularly salient when test outcomes
are dichotomized, so that small differences in scores can translate
into substantial differences in the interpretation of a test.

The findings also raise questions about the appropriate statistical
standard for an adequate predictor. The usual standard is a history

of significant correlations with the criterion. However, this evi-
dence alone is insufficient to assure that a test enhances prediction.
The simulations were limited to cases in which Sens and Spec
were each at least .50, because lower values for either would mean
that the test could actually result in more errors in one population
than could random placement. The truth, however, is that a test
with very high Spec but very low Sens can easily produce signif-
icant correlations in a sample of reasonable size. Inspection of
diagnostic efficiency statistics provides a more reasonable basis
for judgments about the use of tests for decision-making purposes.
If an estimate of BR is available, direct estimation of PPP and NPP
can be particularly useful as a means of avoiding excessive con-
fidence in the implications of a particular test outcome.

The final point to be raised here is the broad applicability of the
terms fest and predictor, as used in this article. They are not
restricted to formal procedures, such as standardized instruments,
but can include interviews, discrete or global clinical impressions,
biographical data, and information gathered from significant oth-
ers. The psychologist who assumes that the issues raised in this
article are relevant only to standardized data-gathering procedures
is sadly mistaken. Informal procedures demonstrate the same sta-
tistical properties as do formal procedures, though there is the
added complication that those statistical properties are unknown.
For example, when the best psychometric predictor of a construct
demonstrates greater criterion-related validity than an interview, if
one’s goal in gathering data is to make judgments about the test
taker and if the outcomes will be combined via vote counting, one
must question from a cost—benefit perspective whether there is any
practical benefit to interviewing at all. On the other hand, there are
often legal and personal expectations about interviewing that
might mandate its continued use, even though it may actually
reduce accuracy. The combination of predictors as an alternative to
the BSP always warrants justification, no matter what the nature of
those predictors.
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Appendix

Analytic Approach to the Two-Predictor Case

The PPP for the two-predictor case can be restated as follows,
assuming that A has been awarded dominance over B:

_ pA+B+Y+)+p(A+B—Y+)
27 p(A+B+Y+) + p(A+B—Y+)
+p(A+B+Y—) + p(A+B—Y—)

PPP (Al)

Compare this to the formula for the PPP of A alone when the
formula for the PPP of a single predictor (see Table 2) is expanded
in consideration of there being a second predictor that is ignored:

PA+B+Y+) + p(A+B—Y+)

P(A+B+Y+) + p(A+B—Y+)
+p(A+B+Y—) + p(A+B—Y—)

PPP, = (A2)

That is, the formulas are exactly the same, and the addition of a
second predictor B offers no improvement in the overall PPP. The
same relationship holds for NPP, versus NPP,,

P(A—B—Y—) + p(A—B+Y—)

P(A—B—Y—) + p(A—B+Y—)
+ p(A=B—Y+) + p(A—B+Y+)

NPP, = (A3)

p(A—B—Y—) + p(A—B+Y—)
p(A—B—Y—) + p(A—B+Y—) ’
+p(A—B—Y+) + p(A—B+Y+)

NPP, =

(A4)

and for the CF:

CF,=pA + B+ Y+)+ pA+B—Y+) + p(A—B+Y—)

+ p(A—B—Y—) (AS)

CF, = p(A+B+Y+) + p(A+B—Y+) + p(A—B+Y—)

+ p(A—B-Y—). (A6)

Analytic Approach to the Three-Predictor Case

The formula for PPP with three predictors is

PPP, =
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PA+B+C+Y+) + p(A+B+C—Y+)
+ p(A+B—C+Y+) + p(A—B+C+Y+)
pA+B+C+Y+) + pA+B+C—Y+) + p(A+B—C+Y+)}

+ p(A—B+C+Y+) + p(A+B+C+Y—) + p(A+B+C—Y—)
+p(A+B—C+Y—)+p(A—B+C+Y—)

(A7)

That is, the numerator represents the probability of at least two
predictors being positive and the individual being a member of the
targeted population. The denominator represents the probability of
at least two predictors being positive.

In contrast, the formula for the PPP of A alone when there are
three predictors expands to

PPP, =

p(A+ B+ C+Y+) + p(A+B+C—Y+)
+ p(A+B—C+Y + )+p(A+B—C—Y+)
PA+B+C+Y+) + p(A+ B+ C—Y +) + p(A+B—C+Y+)
+ p(A+B—C—Y+) + p(A+B+C+Y—)+p(A+B+C—Y—)
4+ pA+B-C+Y-)+p(A+B—C—Y-)

(A8)

That is, the numerator represents the probability of at least A being
positive and the individual being a member of the targeted population,
and the denominator represents the probability of at least A being positive.

The two formulas are surprisingly similar. Only the underlined
terms differ. Comparison of the formulas suggests the following
conclusion: If p(A+B—C—Y+) > p(A—B+C+Y+), or especially
if p(A—B+C+Y—) > p(A+B—C—Y—), then PPP, > PPP,.
These conditions are particularly likely if A is the best single
predictor of population.

Similar comparisons can be offered for NPP and HR, as indi-
cated by the following equations:

NPP, =

p(A—B—C—Y—) + p(A—B—C+Y~)
+p(A—B+C—Y—) + p(A+B—C—Y~)
p(A—B—C—Y—) + p(A—B—C+Y—) + p(A—B+C—Y—)
+p(A+B—C—Y—) + p(A—B—C—Y+) + p(A—B—C+Y+)
4+ p(A-B+C-Y+) + p(A+B-C—Y+)

(A9)

NPP, =

p(A—B—C—Y—) + p(A—B—C+Y~)
+ p(A—B+C—Y—) + p(A—B+C+Y~)
[ PA—B—C—Y—) + p(A—B—C+Y—) + p(A—B+C—Y—)

+ p(A=B+C + Y=) + p(A—B—C—Y+) + p(A—B—C+Y+)
+ p(A—B+C—Y+) + p(A—B+C+Y+)

(A10)

CF, =
PA+B+C+Y+) + p(A+B+C—Y+) + p(A+B—C+Y+)
+ p(A—B+C+Y+) + p(A—B—C—Y—) + p(A—B—C+Y—)
+ p(A—B+C—Y—) + p(A+B—C—Y—) (All)
CF, = p(A+B+C+Y+) + p(A+B+C—Y+) + p(A+B—C+Y+)
+ p(A+B—C—Y+) + p(A—B—C—Y—) + p(A—B—C+Y—)

+ p(A—B+C—Y—) + p(A—B+C+Y—) (Al2)

In all three cases, the same sets of joint probabilities determine
whether three predictors offer an improvement over one. Specifi-
cally, if p(A+B—C—-Y+) > p(A—-B+C+Y+) and/or
p(A—B+C+Y—) > p(A+B—C—Y—), the diagnostic efficiency of
the first indicator exceeds that of all three predictors. The only
difference across the three statistics is the relative influence of the
two comparisons. For PPP, the comparison between
p(A—B+C+Y—) and p(A+B—C—Y—) is the more salient to the
size of the difference. For NPP, it is the comparison between
p(A+B—C—Y+) and p(A—B+C+Y+) that matters most, and the
two are equipotent for the CF.
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