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Taxometric Analysis as a General Strategy for Distinguishing Categorical
From Dimensional Latent Structure

Robert E. McGrath
Fairleigh Dickinson University
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Statistical analyses investigating latent structure can be divided into those that estimate structural model
parameters and those that detect the structural model type. The most basic distinction among structure
types is between categorical (discrete) and dimensional (continuous) models. It is a common, and
potentially misleading, practice to apply some method for estimating a latent structural model such as
factor analysis without first verifying that the latent structure type assumed by that method applies to the
data. The taxometric method was developed specifically to distinguish between dimensional and 2-class
models. This study evaluated the taxometric method as a means of identifying categorical structures in
general. We assessed the ability of the taxometric method to distinguish between dimensional (1-class)
and categorical (2–5 classes) latent structures and to estimate the number of classes in categorical
datasets. Based on 50,000 Monte Carlo datasets (10,000 per structure type), and using the comparison
curve fit index averaged across 3 taxometric procedures (Mean Above Minus Below A Cut, Maximum
Covariance, and Latent Mode Factor Analysis) as the criterion for latent structure, the taxometric method
was found superior to finite mixture modeling for distinguishing between dimensional and categorical
models. A multistep iterative process of applying taxometric procedures to the data often failed to
identify the number of classes in the categorical datasets accurately, however. It is concluded that the
taxometric method may be an effective approach to distinguishing between dimensional and categorical
structure but that other latent modeling procedures may be more effective for specifying the model.

Keywords: categorical latent structure, dimensional latent structure, taxometric analysis, latent structural
modeling, finite mixture modeling

An important distinction exists among statistical techniques
available for the study of latent structure between those techniques
used primarily to distinguish between dimensional versus categor-
ical latent structure (the latent structure type) and those used to
estimate a structural model assuming either a primarily dimen-
sional or categorical structure (the latent structure model). Exam-
ples of techniques often used for the former purpose include finite
mixture modeling and various statistics developed in conjunction
with cluster analysis such as the cubic clustering criterion. Tech-
nically, these strategies identify dimensional structure by suggest-
ing a one-class structure. Examples of techniques used for the
latter purpose include traditional factor analytic and item response
theory techniques, which assume the latent structure is purely
dimensional, and cluster analysis, which assumes a categorical
structure.

We would propose that some attempts to model latent structure
without first evaluating whether the procedures used are consistent
with the latent structure type are potentially misleading. For ex-
ample, Moffitt’s (1993) taxonomy of life-course-persistent and
adolescent-limited offending has had a significant impact on re-
search in delinquency and conduct disorder. However, preliminary
research showing that the two might represent endpoints on a
dimension rather than distinct types (Walters, 2011) suggested that
scientific resources may be better spent investigating relative sta-
bility in delinquency dimensions than engaging in the more com-
mon practice of identifying distinct delinquency trajectories (Pi-
quero, 2008). Furthermore, because latent structure holds
important implications for research, theory, and practice (Ruscio,
Haslam, & Ruscio, 2006), misidentification of latent structure type
could lead to faulty selection of measurement models (groups vs.
dimensions), faulty inferences about etiological process (specific
etiology/nonlinear interaction/threshold effect/developmental bi-
furcation vs. additive models), and faulty development of assess-
ment devices (using a small number of items designed to distin-
guish between categories vs. a larger number of items located at
different points along a continuum).

This is not to say that every analysis of latent structure need
begin with an evaluation of latent structure type. Before assessing
latent structure type, the presence of categorical structure should
be a reasonable hypothesis to consider. In a discussion of taxo-
metric analysis, Lenzenweger (2004) listed three criteria that
should be satisfied before undertaking an investigation into latent
structure type: (a) a substantive and theoretically sound model is
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under investigation; (b) the model implicitly or explicitly posits the
existence of a category or taxon; and (c) identifying a taxon will
make a difference in how we understand or treat the construct.
Walters (2011) applied these criteria to Moffitt’s (1993) develop-
mental taxonomy of antisocial behavior and discovered that the
model was (a) coherent, substantive, and sound; (b) plausibly
categorical; and (c) in a position to answer important questions
about etiology, assessment, and treatment if, in fact, the latent
structure of antisocial behavior were to prove categorical. Conse-
quently, performing an analysis to determine latent structure type
was justified.

The most basic distinction among latent structure types is the
one between what we will refer to as dimensional and categorical
structure types (Haertel, 1990).1 The former can be further subdi-
vided according to the number of dimensions, the latter according
to the number of classes (recognizing that dimensional variation,
and covariation, can also occur within classes). The most impor-
tant subdivision within the categorical structure types is the dis-
tinction between dichotomous and polytomous (more than two
classes) structure.

In recent years, taxometrics have emerged as a popular method
for distinguishing between dimensional and dichotomous structure
types.2 Taxometrics were introduced by Meehl and his associates
(e.g., Meehl, 1995, 2004; Meehl & Yonce, 1994, 1996; Waller &
Meehl, 1998), who used the terms taxon and complement to refer
to the two classes that make up a dichotomous structure. The
emergence of taxometrics popularized the study of latent structure
type, particularly in the fields of personality and psychopathology,
and provided a statistical tool for such research.

Taxometrics have an important advantage over other structural
typing strategies in that Meehl and his associates developed a
variety of relatively independent taxometric procedures, each of
which generally allows for multiple independent tests of the type
of structure. Meehl (1995) coined the term coherent cut kinetics to
refer to the use of consistency in findings across multiple distinct
analyses as a guide to conclusions about the structure type. Three
relatively independent taxometric procedures are in common use.
These have been described in detail elsewhere and will only be
summarized briefly here.3

Mean Above Minus Below a Cut (MAMBAC; Meehl & Yonce,
1994) requires two indicators of the construct. Cut scores are set at
successive points on one variable (the input indicator). At each cut
score, the mean score for a second indicator (the output indicator)
is computed separately for those above and below the cut, and the
difference between the two means is computed. For dichotomous
constructs without serious skew, a graph with input cut scores on
the abscissa and output mean differences on the ordinate should be
hill shaped, with the peak occurring at the cut where the mean
difference between the two classes is at a maximum. When the
latent construct is dimensional, the same graph should tend toward
a U shape. For all possible combinations of m variables used as
both input and output indicators, MAMBAC allows m(m � 1)
distinct tests of structure type. It is also possible to generate an
estimate of the taxon base rate (assuming a taxon exists) from each
curve.

Maximum Covariance (MAXCOV; Meehl & Yonce, 1996)
requires one input and two output indicators. Observations are
ordered and divided into subsamples along the input indicator, and
the covariance between the output indicators is computed within

each subsample. For dichotomous constructs, a graph with input
subsample on the abscissa and output covariances on the ordinate
should resemble a hill that peaks at the subsample where the
frequencies of the taxon and complement classes are approxi-
mately equal. If the construct is dimensional, the graph should
show no clear peak. With m indicators MAXCOV allows

m�m � 1��m � 2�

2

distinct tests of structure type. Again, a separate estimate of the
taxon base rate can be derived from each curve.

Latent Mode factor analysis (L-Mode; Waller & Meehl, 1998)
requires a minimum of three indicators. In L-Mode the full set of
indicators is subjected to factor analysis and a density plot of the
factor scores for the first factor is generated. Because of the
reduction in measurement error, the density plot for the first factor
scores should be bimodal if the data reflect a dichotomous struc-
ture and unimodal if the data are dimensional. One L-Mode anal-
ysis is usually conducted using the entire set of indicators. Two
estimates of the taxon base rate can be generated from the single
L-Mode curve.

Although the number of distinct tests of structure type that can
be generated from taxometrics offers a clear advantage over other
tests of structure type, taxometrics have a significant disadvantage
in that they were intended only to distinguish between dimensional
and dichotomous structures. In contrast, cluster-analytic methods
and finite mixture modeling can estimate the number of true
classes whether the data are inherently dimensional, dichotomous,
or polytomous.

Several publications have now considered the implications of
polytomous structure for taxometric analysis. The first discussions
of this issue were primarily conceptual, suggesting that taxometric
analysis can be applied to such data so long as the categories are
ordinally arranged on the manifest variables. Under these condi-
tions, it was hypothesized that taxometric procedures could be
used iteratively to identify one class boundary, then within the
classes identified on the basis of the first set of analyses to identify
subsequent boundaries (e.g., Meehl, 1999; Ruscio & Ruscio,
2002).

McGrath (2008) considered what would happen if taxometric
procedures are applied to data with the intention of distinguishing
between dichotomous and dimensional structure when the latent
structure actually involves three classes. He found that standard
statistics used to distinguish between dimensional and dichoto-
mous structure produced confusing or even misleading results.

1 Some authors refer to the former structure as continuous. We prefer the
more general term dimensional because evidence that a latent structure is
not categorical is insufficient evidence that the underlying distribution is
continuous (Michell, 2005).

2 Some articles have associated taxometric procedures with the identi-
fication of categorical structure, but for the present study it is particularly
important to recognize that the taxometric method was developed specif-
ically to distinguish between dimensional and dichotomous structure.

3 A fourth taxometric procedure, Maximum Eigenvalue (MAXEIG;
Waller & Meehl, 1998), also frequently appears in the taxometric literature,
but it is highly redundant with MAXCOV (Ruscio, Walters, Marcus, &
Kaczetow, 2010) and so will not be considered further here.
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McGrath’s (2008) findings highlighted the need to consider the
possibility of polytomous structure when using taxometrics to
evaluate questions of latent structure type. However, the iterative
process described by Meehl (1999) and Ruscio and Ruscio (2002)
has not yet been tested in practice. Complicating efforts to develop
a generalization of taxometrics to the polytomous case was the
absence of a standard criterion for drawing a conclusion about
dimensional versus two-class structure from each of the taxometric
tests.

Recently, the comparison curve fit index (CCFI; Ruscio, Ruscio,
& Meron, 2007) has been suggested as such a standard. The CCFI
is computed using the following steps:

1. For each of the taxometric procedures, compute the usual
curves. Average the curves for taxometric procedures
that produce more than one.

2. Create two comparison populations bootstrapped from
the original data, with one population generated under the
assumption of dimensional structure and one under the
assumption of dichotomous structure. These distributions
are intended to match the original data on distribution
shape, correlations between indicators, and between-
group differences in the taxonic case. Ruscio and Kac-
zetow (2008) developed a program that can be used to
generate these comparison populations.

3. Draw multiple random samples from the two populations
and submit these samples to the same taxometric analy-
ses. Separately average the set of curves generated from
the dichotomous and from the dimensional comparison
populations.

4. Compute the root-mean-squared residual (RMSR) be-
tween corresponding data points on the mean curve gen-
erated from the actual data and the mean curve generated
from the simulated dichotomous population. Do the same
with the mean curve generated from the dimensional
population.

5. To compute the CCFI, divide the RMSR for the dimen-
sional simulations by the sum of the two RMSRs. The
resulting statistic can range between 0 and 1, with a value
below .50 consistent with dimensional structure and a
value above .50 consistent with dichotomous structure.
Whereas a cut score of .50 allows classification of all
CCFI values as indicative of one structure or the other,
Ruscio, Walters, Marcus, and Kaczetow (2010) showed
that the statistic achieved higher accuracy rates when
CCFI values in the range of .45 to .55, or .40 to .60, were
treated as ambiguous.

The CCFI has now been found to be an effective indicator of
dimensional or dichotomous structure in a number of studies (e.g.,
Ruscio et al., 2007, 2010; Walters & Ruscio, 2009, 2010). Re-
cently, Walters, McGrath, and Knight (2010) demonstrated more
generally that the CCFI accurately distinguishes between dimen-
sional and categorical structures whether the latter are dichoto-
mous or trichotomous. Their findings provide a rationale for eval-
uating the CCFI as a tool for implementing the iterative process

described by Meehl (1999) and Ruscio and Ruscio (2002). The
present study presents the results from such an evaluation.
Through iterative taxometric analyses using the CCFI as the cri-
terion for gauging categorical structure, the results provide infor-
mation about the use of taxometrics as a general strategy for
distinguishing between dimensional and categorical structure, and
for estimating the number of classes constituting a categorical
structure.

Method

In this study we examined latent structure in Monte Carlo
datasets reflecting dimensional (k � 1) and categorical (k � 2–5)
structures. For each latent structure, 2,500 simulated datasets were
generated with m � 3–6 continuous indicators, for a total of
10,000 datasets per structure type. These datasets were created
using the iterative algorithm described by Ruscio and Kaczetow
(2008). Their algorithm can be used to produce datasets reflecting
dimensional structure that vary in sample size, number of indica-
tors, target correlation between indicators, and asymmetry and tail
weight of the indicator distributions. A dataset reflecting two-class
latent structure, with a preset value for d and the variance ratio
between the two classes, can be created by generating two sub-
samples of data, linearly transforming one subsample, and then
combining the two. Applying the same strategy to k subsamples
can be used to generate k-class datasets consisting of k – 1 taxon
classes and a complement class (Walters et al., 2010). Note that
this strategy generates classes that appear at the same relative
location on each of the manifest variables, an issue we will return
to later in the Discussion when addressing the limitations of the
study.

Parameters for dimensional datasets were randomly selected
from uniform distributions for sample size (N � 1,000–3,000),
between-indicator correlations (rxy � .10–.65), asymmetry (g �
.00–.30), and tail weight (h � .00–.15). The use of the g and h
formulas to create asymmetrical and peaked distributions from
normally distributed data was described by Hoaglin (1985). For
normal distributions, g � h � 0. The magnitude of g controls the
asymmetry of the resulting distribution, the magnitude of h its
kurtosis. The permitted values for g and h restricted the skew of
any subsample to the range 0–3 and the kurtosis to the range 0–28.

Parameters for categorical datasets were set by selecting ran-
domly from uniform distributions for the sample size (N � 1,000–
3,000), taxon base rates (BR � .10 � 1/k, e.g., the maximum BR
for any taxon class in a four-class dataset was 1/4), indicator
validity (d � 1.25–2.00 between adjoining classes), taxon:
complement variance ratio (VR � 1–4, integers only), within-
group correlations (rWG � .00–.30), asymmetry (g � .00–.30),
and tail weight (h � .00–.15). Within polytomous datasets, BR and
d were allowed to vary independently for each taxon class. The
complement base rate represented the residual after summing the
base rates for the taxon classes. A single value was selected for
each of the within-class parameters (VR, rWG, g, and h) for a
dataset. The actual skew and kurtosis for each dataset were af-
fected by the values for BR, d, and VR as well as g and h. The mean
skew across all 50,000 datasets was .48 (range � [�0.29, 1.72]),
and the mean kurtosis was 2.25 (range � [1.67, 9.00]).

Taxometric tests were computed using Ruscio’s (2011) taxo-
metric software. Datasets were analyzed using MAMBAC,
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MAXCOV, and L-Mode. Analyses were conducted using default
settings for the software at the time of its download, with the
exception that MAMBAC curves were generated using a
LOWESS smoother and MAXCOV curves using running medians
(an additional variation will be noted below). MAXCOV sub-
samples were based on overlapping windows of cases, as recom-
mended by Walters and Ruscio (2010). For purposes of computing
the CCFI, 10 bootstrapped samples were drawn for each of the two
scenarios.

Results

The analysis of the taxometric method as a strategy for distin-
guishing between latent dimensional and categorical structure pro-
ceeded in three stages. The first (Step 1) involved classifying
datasets with one to five categories (where the presence of one
category represents dimensional structure) as either dimensional or
dichotomous on the basis of CCFI values. In those datasets where
the results suggested dichotomous structure, base-rate estimates of
the putative taxon were then used as a basis for dividing the dataset
into two subsamples. Each subsample was then submitted to taxo-
metric analysis with the purpose of identifying further categorical
distinctions (Step 2). Those subsamples where the taxometric
method suggested dichotomous structure were further subdivided,
with each subsubsample submitted to taxometric analysis (Step 3).
Step 1 permitted identification of one to two categories within each
dataset, Step 2 permitted one to four categories, and Step 3
permitted one to eight categories.

Taxometric Analysis Step 1

Identifying basic structure. The first step in the iterative
process involved submitting all 50,000 datasets to taxometric
analysis and computing the CCFI value for each dataset. CCFI
values � .50 were taken as support for dimensional structure, and
values � .50 were taken as support for categorical structure. Five
different standards for the detection of structure type were exam-
ined. These included the CCFIs generated separately by L-Mode,
MAMBAC, and MAXCOV. In addition, the three CCFIs were
averaged for each dataset, and the mean CCFI was compared with
the same criterion. Finally, a majority vote procedure was inves-
tigated in which two CCFI values � .50 was considered evidence
of dimensional structure, whereas two CCFI values � .50 was
considered evidence of categorical structure. These last two were
also evaluated by Ruscio et al. (2010).4

For each of the five detection standards, Table 1 provides six
diagnostic efficiency statistics: sensitivity, specificity, positive
predictive power, negative predictive power, overall hit rate, and
area under the curve. The last provides an estimate of classification
accuracy without reliance on a fixed cut score for the CCFI.
Results are provided for the comparison of dichotomous (k � 2)
versus dimensional (k � 1) datasets, which is consistent with
previous research on the topic of classification using taxometrics.
Results are also provided for the comparison of categorical (k � 1)
versus dimensional (k � 1) datasets.5

Some of the results from the current study can be compared with
results obtained by Ruscio et al. (2010) in a large-scale Monte
Carlo investigation of the CCFI’s ability to differentiate between
dimensional and dichotomous datasets. Sensitivity values for de-

tecting dichotomous structure in our Table 1 correspond with
values listed in Ruscio et al.’s Table 2 (p. 11) as the accuracy rate
for categorical datasets at the .50 threshold. Our specificity values
can be compared with the accuracy rate for dimensional datasets at
the .50 threshold in their Table 2, and our hit rate parallels their
accuracy rate for all samples.

There were some differences noted. In particular, L-Mode was
less sensitive (81.1% vs. 93.1%) though more specific (100% vs.
96.3%) in our simulations than in the Ruscio et al. (2010) study.
The discrepancies from Ruscio et al. may reflect differences in the
value ranges for various parameters (particularly the number of
predictors, sample sizes, and taxon base rates) across the two
studies, as well as the influence of multiple taxonic groups on the
outcomes. Across the three taxometric procedures, however, the
mean difference in sensitivity and specificity statistics was only
0.4%, whereas the mean difference in overall hit rate was 0.5%.

4 Ruscio et al. (2010) also investigated a unanimity standard that allowed
classification only if all three CCFIs supported the same conclusion.
However, preliminary results were not supportive of this approach, so to
simplify the presentation it was omitted.

5 The statistics provided in Table 1 assume a rectangular distribution of
the five structure types. Because the actual relative frequency of various
structure types is unknown, this assumption could result in a mis-estimate
of the CCFI’s true accuracy. However, equalizing the proportion of cate-
gorical and dimensional datasets actually enhanced diagnostic efficiency
estimates slightly since specificity tended to be better than sensitivity for
detecting categorical datasets.

Table 1
Step 1 Diagnostic Efficiency Statistics for Distinguishing
Dimensional Versus Dichotomous and Dimensional Versus
Categorical Datasets

Structure Sens Spec PPP NPP HR AUC

L-Mode
Dichotomous 81.1 100.0 100.0 84.1 90.5 1.00
Categorical 95.0 100.0 100.0 83.2 96.0 1.00

MAMBAC
Dichotomous 99.4 99.8 99.8 99.4 99.6 1.00
Categorical 99.9 99.8 100.0 99.4 99.8 1.00

MAXCOV
Dichotomous 89.2 99.9 99.8 90.2 94.5 1.00
Categorical 60.5 99.9 99.9 38.7 68.4 .99

Mean
Dichotomous 96.5 100.0 100.0 96.7 98.3 1.00
Categorical 99.1 100.0 100.0 96.5 99.3 1.00

Majority
Dichotomous 94.6 100.0 100.0 94.9 97.3
Categorical 98.5 100.0 100.0 94.3 98.8

Note. Dichotomous or Categorical structure was treated as the positive
condition, and Dimensional structure was treated as the negative condition
for classification analyses. Values are stated as percentages. Sens �
sensitivity; Spec � specificity; PPP � positive predictive power; NPP �
negative predictive power; HR � hit rate; AUC � area under the curve;
L-Mode � Latent Mode comparison curve fit index (CCFI); Dichoto-
mous � classification of 10,000 dichotomous versus 10,000 dimensional
datasets; Categorical � classification of 10,000 dimensional versus 40,000
two- to five-class (categorical) datasets; MAMBAC � Mean Above Minus
Below A Cut CCFI; MAXCOV � maximum covariance CCFI; M �
classification based on the mean of the three CCFIs; Majority � classifi-
cation based on the majority of the three CCFIs.
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For the two aggregative approaches (Mean and Majority) the mean
difference was only 0.2%, suggesting that the present results
largely replicate previous findings.

On the basis of the results presented in Table 1, the decision was
made to use the mean CCFI value as the criterion for categorical
structure in subsequent analyses. This statistic accurately detected
96.5% of 10,000 dichotomous datasets, 99.1% of the 40,000 cat-
egorical datasets (which included the dichotomous sets), and 100%
of the dimensional datasets. The overall hit rates for the
MAMBAC CCFI alone were actually higher than those for the
mean CCFI, suggesting that this value provided the best single
indicator of structure type, but several factors argued in favor of
using the mean. First, the difference was small and potentially
unreliable given that the mean CCFI was associated with the
higher hit rate in Ruscio et al. (2010). Second, the mean CCFI was
associated with perfect prediction in the case of dimensional
datasets, as indicated by specificity and positive predictive power
values of 100%.

Additional analyses were conducted to identify predictors of
accuracy in the CCFI. For two structural models (one and four
classes), prediction using the mean CCFI as an index of dimen-
sional or categorical structure was perfect. For each of the three
structural models where there was variability in the outcomes for
the dichotomized mean CCFI (two, three, and five classes), logistic
regressions were conducted attempting to predict CCFI outcome
using the variables N, base rate for the highest taxon group, base
rate for the complement group, mean d value, VR, rWG, g, h, and
number of indicators. Results demonstrated little consistency
across the three structural models, providing little guidance for
predicting when the CCFI will be effective.

Estimating the taxon base rate. The other issue to be ad-
dressed with the Step 1 results was the optimal classification of
cases into two classes once a dataset was identified as categorical
based on CCFI results. Several studies suggest that the base-rate
technique is the most accurate method for case classification
available in taxometrics (Ruscio, 2009; Ruscio, Haslam, & Ruscio,
2006, pp. 146–148). This procedure involves assigning those
observations with the highest total score across the indicators to
the taxon class so as to match the estimated taxon base rate.
Applying the base-rate technique, therefore, first requires gener-
ating an estimate of the taxon base rate from the dataset, so the
next step in the analysis involved identifying an optimal base-rate
estimation procedure.

Identifying an optimal base-rate estimation procedure is rela-
tively straightforward for simulations with an underlying dichot-
omous structure, in that the various base-rate estimates generated
from the taxometric analyses can be compared with the actual
taxon base rate (e.g., Meehl & Yonce, 1994, Table 1; Meehl &
Yonce, 1996, Table 2). The matter is more complicated in the case
of polytomous datasets, because taxometric procedures for esti-
mating base rates were developed only to distinguish between two
classes. McGrath (2008) discussed the implications of trichoto-
mous structure for taxometric base-rate estimation procedures and
concluded that various parameters of the sample distribution can
influence the results. Several possibilities could be justified on the
basis of that discussion:

1. Taxometric procedures would tend to split the sample at
the first taxon class, so that the complement class would

emerge as one class and all the taxon classes would be
combined into the second.

2. Taxometric procedures would tend to split the sample
into two relatively equal-sized classes.

3. Taxometric procedures would tend to split the sample
where the indicator validity (the difference between two
adjoining class means stated in terms of d) was greatest.

The goal was to identify the base-rate estimation procedure
incorporated into taxometric software that came closest to detect-
ing true dividing lines in the dataset. Several variables were
created for each dataset that represented true dividing lines likely
to be detected by existing taxometric procedures. The first was a
series of base-rate values encompassing incremental numbers of
taxon classes. For example, in datasets with five classes variable
BR-4 was the base-rate estimate that resulted from treating the four
taxon classes as one class and the complement class as the other;
BR-3 was created by combining the three taxon classes with the
highest means as one class and combining the complement class
and lowest taxon class as the other; BR-2 was based on the highest
two taxon classes versus the lowest three classes; and BR-1 was
based on the highest taxon class versus the other four classes.
Finally, variable BR-d was created by splitting the dataset at the
taxon with the highest d value.

These variables were then compared with the mean base-rate
estimates from L-Mode, MAMBAC, and MAXCOV. They were
also compared with the mean of these three means (Mean3). Since
the L-Mode mean is based on only two estimates derived from a
single curve, and McGrath (2008) raised particular concerns about
the impact of polytomous structure on L-Mode estimates of base
rate, the dataset base rate values were also compared with the mean
of the base-rate estimates from MAMBAC and MAXCOV
(Mean2). Two sets of statistics were computed within each of the
five structure types as the basis for comparisons: the correlation
coefficient and the RMSR. The results of these analyses can be
found in Table 2.

A number of conclusions can be drawn from this table. First, as
predicted, both correlations and distance metrics indicated that
L-Mode generated less accurate estimates of base rate than the
other two taxometric procedures. The mean correlation with the
dataset base-rate variables was actually negative, and the mean
RMSR was substantially larger than that associated with the other
procedures. These problems were evident even when datasets were
dichotomous. Accordingly, subsequent discussion focuses on
MAMBAC, MAXCOV, and Mean2.

Second, the remaining taxometric procedures were generally
better at predicting dividing lines near the middle of the distribu-
tion. The mean correlations were higher for the more medial splits
of the datasets, and the mean RMSRs were lower than was true for
the base-rate variables in general, for those based on the largest d
value, and for the division between taxon classes and the comple-
ment class. Finally, the Mean2 estimates nosed out those based on
MAMBAC as predictors of the base rate derived from medial
splits of the data. While Mean2 and MAMBAC were associated
with the same mean RMSR (0.08), Mean2 was associated with a
slightly larger mean correlation (.85). These findings suggest that
the best single taxometric indicator for detecting a true dividing
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line between classes in the dataset is the mean of the mean
base-rate estimates from MAMBAC and MAXCOV.6

Analyses were conducted to evaluate factors that predicted
accuracy in estimation of the medial split of the data by Mean2.
The absolute difference between the medial split of the data
(averaging the two medial splits in cases where k was an odd
number) and Mean2 was regressed onto the same nine variables
used to predict accuracy in CCFI outcomes. This analysis was
conducted separately for k � 2–5 classes. The following variables
significantly predicted greater accuracy in at least three of the four
analyses: larger BR for the highest class, larger BR for the com-
plement class, larger mean d value, larger rWG values, and smaller
variance ratios. The direction of the relationship for rWG was
unexpected, as was the failure of N to prove a valid predictor. It
should be noted that the relationship for rWG was not significant in
the dichotomous case, suggesting that it holds only for polytomous
datasets, and the relatively large minimum value for N (1,000) may
have suppressed any impact of sample size on the outcomes. That
is, this finding should not be generalized to smaller sample sizes.

Taxometric Analysis Steps 2–3

To summarize the results from Step 1, the recommended single
estimate of whether structure was dimensional or categorical was
provided by the mean CCFI across all three taxometric procedures.
Also, the mean of the mean base-rate estimates from MAMBAC
and MAXCOV offered the optimal approach to identifying a true
dividing line between classes within the dataset.

In Step 2, these heuristic rules were used as follows. Datasets
identified as dimensional in Step 1 received no further attention.
Datasets identified as categorical in Step 1 were divided into two
subsamples based on the Mean2 estimate of base rate. Each of
these subsamples was then evaluated using the three taxometric
procedures.7

If neither subsample mean CCFI exceeded .50, the results were
considered indicative of dichotomous structure (consisting of only
two classes) and the procedure terminated at Step 2. If either or
both subsample mean CCFIs exceeded .50, the process was re-
peated, dividing each subsample with mean CCFI � .50 into two
subsamples based on Mean2, and the taxometric method was
applied within each subsample (Step 3).

6 To evaluate whether Mean2 could be improved further as an estimate
of the taxon base rate, the latter was regressed onto the former in the
dichotomous samples and RMSR was computed between the predicted and
actual base-rate values. This RMSR was only .002 smaller than the RMSR
comparing the Mean2 and actual base-rate values.

7 The mean CCFI perfectly identified dimensional structure in this study.
Since it is unlikely that all studies will achieve this level of accuracy, for
purposes of “what if” analysis those dimensional datasets most likely to be
identified as categorical—the 16 dimensional datasets that MAMBAC
identified as categorical—were also submitted to Steps 2 and 3 analyses.
Of those datasets, 15 were identified as consisting of only two classes, a
fairly close estimate of the true structure.

Table 2
Step 1 Estimation of Base Rates

Class/M

Correlation RMSR

L-Mode MAMBAC MAXCOV Mean3 Mean2 L-Mode MAMBAC MAXCOV Mean3 Mean2

2 classes
BR-1a 0.00 0.66 0.97 0.87 0.89 0.30 0.09 0.04 0.10 0.06

3 classes
BR-2a �0.05 0.88 0.91 0.79 0.92 0.20 0.13 0.13 0.07 0.13
BR-1a �0.43 0.77 0.78 0.43 0.80 0.38 0.11 0.11 0.19 0.11
BR-d �0.23 0.66 0.75 0.50 0.73 0.31 0.10 0.09 0.14 0.10

4 classes
BR-3 0.22 0.86 0.70 0.76 0.79 0.14 0.19 0.19 0.12 0.19
BR-2a �0.11 0.90 0.88 0.61 0.91 0.25 0.03 0.04 0.08 0.03
BR-1 �0.25 0.66 0.53 0.28 0.60 0.41 0.17 0.18 0.25 0.18
BR-d �0.11 0.53 0.58 0.36 0.57 0.29 0.14 0.13 0.16 0.13

5 classes
BR-4 0.27 0.84 0.48 0.67 0.65 0.13 0.24 0.24 0.17 0.24
BR-3a 0.16 0.89 0.69 0.69 0.81 0.18 0.09 0.09 0.04 0.09
BR-2a �0.16 0.82 0.67 0.41 0.77 0.31 0.07 0.09 0.15 0.08
BR-1 �0.13 0.55 0.30 0.19 0.42 0.45 0.22 0.23 0.29 0.22
BR-d �0.07 0.44 0.45 0.27 0.47 0.30 0.16 0.15 0.18 0.16

M �0.07 0.73 0.67 0.52 0.72 0.28 0.13 0.13 0.15 0.13
Ma �0.10 0.82 0.82 0.63 0.85 0.27 0.08 0.08 0.11 0.08
M-d �0.10 0.57 0.69 0.50 0.67 0.30 0.12 0.10 0.14 0.11
M-k 0.11 0.81 0.76 0.77 0.81 0.19 0.16 0.15 0.12 0.15

Note. Results for each structure type are based on 10,000 datasets.L-Mode � Latent Mode comparison curve fit index (CCFI); MAMBAC � Mean Above
Minus Below A Cut CCFI; MAXCOV � maximum covariance CCFI; BR-(1–4) � base rate for the combined one to four taxon classes with the highest
mean scores; BR-d � taxon base rate where the split is associated with the largest d value; Ma � mean for the rows with superscript a; M-d � mean of
BR-d outcomes; M-k � mean based on the split between the complement and taxon classes; Mean3 � mean of all three mean base rate estimates; Mean2 �
mean of MAMBAC and MAXCOV mean base rate estimates; RMSR � root-mean-squared residual.
a Represents more medial splits of the dataset.

6 MCGRATH AND WALTERS



To complete Step 3 analyses, two modifications of taxometric
procedures were implemented. The Step 2 analyses identified as
many as four subsamples of a dataset to be evaluated in Step 3.
Even with N � 1,000 some subsamples were quite small. Sub-
samples with fewer than 100 cases were not analyzed further.
Second, computation of the CCFI requires dividing the cases under
analysis into two groups under the assumption of dichotomous
structure. A sample-based estimate of the taxon base rate is used to
determine the size of each group. In some subsamples one group
was so small that the MAMBAC code crashed. Note that this is not
a problem of subsample size per se but of the algorithm used to
compute a statistic for that subsample. This problem was resolved
by changing the MAMBAC code for the Step 3 analyses so that if
the division of the subsample into two groups resulted in an error,
MAMBAC was conducted again, this time dividing the subsample
into two equal-sized groups.

Because each step allowed for doubling of the number of
groups, it was possible after Step 3 for taxometric analysis to
suggest anywhere from one to eight classes in the dataset. The
distribution of outcomes across all datasets may be found in Table

3. Note that when all datasets were considered (so that small
subsamples were treated simply as a single class), the mean esti-
mate of the number of classes never differed from the true number
by more than .45. The mean error declined further when only
datasets that were completely analyzed (no small subsamples)
were considered. As an overall index of consistency between true
and estimated structure, the intraclass correlation (two-way mixed
effects, single measure) was .87 for all datasets, .88 for those
datasets where the analysis was not terminated at Step 3. However,
while diagnostic efficiency statistics were generally high, some
were disappointing. The positive predictive power when taxomet-
rics suggested more than two classes, and the sensitivity for
detecting three- or five-class structures, tended to be particularly
poor. The latter finding probably reflects lower accuracy resulting
from the averaged medial base-rate estimates when the number of
classes was odd. When all datasets were considered, the overall hit
rate for categorical datasets was only .44, though if mis-estimates
by one class were allowed (e.g., if a three-class dataset was
estimated to consist of either two, three, or four classes it was
considered a hit), then the hit rate increased to .72. The values were

Table 3
Final Estimates of Number of Classes

Structure

Solution

M Sens Spec Interp %1 class 2 classes 3 classes 4 classes 5 classes 6 classes 7 classes 8 classes

All datasets
1 class 10,000 0 0 0 0 0 0 0 1.00 1.00 0.99 100.00
2 classes 346 6,231 1,977 1,421 25 0 0 0 2.45 0.62 0.98 100.00
3 classes 2 855 4,939 3,633 476 95 0 0 3.40 0.49 0.94 100.00
4 classes 0 3 397 7,093 1,715 590 165 37 4.31 0.71 0.79 100.00
5 classes 12 0 84 3,390 3,862 1,483 816 353 5.06 0.39 0.94 100.00
PPP 0.97 0.88 0.67 0.46 0.64
NPP 1.00 0.91 0.88 0.92 0.86

Completely analyzed
1 class 10,000 0 0 0 0 0 0 0 1.00 1.00 0.99 100.00
2 classes 346 6,231 1,269 854 14 0 0 0 2.31 0.72 0.98 87.14
3 classes 2 855 4,370 3,344 450 91 0 0 3.40 0.48 0.95 91.12
4 classes 0 3 394 7,021 1,696 589 165 37 4.31 0.71 0.80 99.05
5 classes 12 0 84 3,387 3,857 1,482 816 353 5.06 0.39 0.94 99.91
PPP 0.97 0.88 0.71 0.48 0.64
NPP 1.00 0.94 0.89 0.91 0.85

Unambiguous
1 class 9,999 0 0 0 0 0 0 0 1.00 1.00 0.99 99.99
2 classes 134 4,755 456 369 0 0 0 0 2.19 0.83 0.99 57.14
3 classes 0 295 2,296 1,499 37 10 0 0 3.32 0.55 0.98 41.37
4 classes 0 0 101 4,719 328 59 10 2 4.07 0.90 0.86 52.19
5 classes 0 0 13 1,392 1,148 152 110 68 4.71 0.40 0.99 28.83
PPP 0.99 0.94 0.80 0.59 0.76
NPP 1.00 0.96 0.93 0.97 0.93

Unambiguous/completely
analyzed

1 class 9,999 0 0 0 0 0 0 0 1.00 1.00 0.99 99.99
2 classes 134 4,755 249 258 0 0 0 0 2.12 0.88 0.99 53.96
3 classes 0 295 1,995 1,431 35 10 0 0 3.33 0.53 0.98 37.66
4 classes 0 0 100 4,672 324 59 10 2 4.07 0.90 0.86 51.67
5 classes 12 0 13 1,391 1,144 152 110 68 4.69 0.40 0.99 28.90
PPP 0.99 0.94 0.85 0.60 0.76
NPP 1.00 0.97 0.93 0.97 0.93

Note. Completely analyzed refers to 47,722 (95.4%) datasets for which Step 3 analysis was not terminated due to insufficient sample size. Unambiguous
refers to 27,952 (55.9%) datasets for which no tests proved ambiguous using ambiguity thresholds of [.45, .55]. Unambiguous/completely analyzed refers
to 27,432 (54.9%) datasets meeting both conditions. Sens � sensitivity; Spec � specificity; Interp % � % of cases interpretable (not considered ambiguous
or incompletely analyzed); PPP � positive predictive power; NPP � negative predictive power.
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approximately the same when datasets with small subsamples were
omitted. These findings suggest that although aggregating esti-
mates of the number of classes across a large collection of datasets
may achieve acceptable accuracy, the same is not true for estimates
based on individual datasets.

As indicated previously, Ruscio et al. (2010) suggested sev-
eral thresholds for interpretation of the CCFI, including treating
CCFI values in the range [.45, .55] or [.40, .60] as ambiguous.
Table 3 provides additional results using the former criterion.
The inclusion of an ambiguous category created a cascading set
of indeterminate outcomes across the three steps. In Step 1, the
mean CCFI allowed for identification of structure in almost
97% of datasets, similar to the 99.4% identified by Ruscio et al.
However, treating a dataset as ambiguous if the mean CCFI
value fell in the more liberal interval [.45, .55] in any of the
three steps dramatically reduced the proportion of interpretable
outcomes, particularly for datasets with more categories. For
the three- and five-class datasets the percentage of interpretable
datasets fell below 50%, a finding consistent with the relatively
poorer accuracy for those structures. Furthermore, though there
was improvement in diagnostic efficiency statistics and the
mean estimate of the number of classes, as could be expected,
the increment would seem insufficient to compensate for the
dramatic loss in information. Accordingly, we urge caution in
the use of ambiguous intervals for CCFI when the goal is to
estimate the number of categories in a polytomous structure.

Finite Mixture Modeling Comparison

To provide some context for the accuracy of the taxometric
procedures, all datasets were also evaluated using finite mixture
models as an alternative to taxometrics. Each dataset was evalu-
ated for the presence of two to five classes. Analyses were con-
ducted using Mplus (Muthén & Muthén, 2007). A recent compar-
ison of some of the many fit indices Mplus can generate for
mixture models suggested that the Bayesian Information Criterion
(BIC) was the best of the information criteria examined, whereas
the bootstrapped likelihood ratio test (BLRT) was the most con-
sistent of the significance tests (Nylund, Asparouhov, & Muthén,
2007). Table 4 provides the mean BIC value across the 10,000
datasets reflecting each structural model as well as the probability
that the p value for the BLRT was significant (�.05).

The BIC is relevant only to comparing categorical models.
Smaller BIC values tend to be associated with better fit to the data.
Similar to the results for the taxometric analyses, the BIC was
biased toward models with more classes. Even if a decrease in
BIC � 100 is treated as trivial, the results suggest a three-class
solution for the datasets with one to three classes and a five-class
structure for the datasets with four to five classes.

The BLRT can address questions of dimensional versus dichot-
omous structure as well as questions of the number of classes.
Specifically, a significant outcome for the BLRT indicates that the
corresponding model fits the data better than a model with one
fewer class. A significant BLRT for the two-class model suggests
the two-class model is superior to a one-class (dimensional) model,
whereas a nonsignificant outcome suggests the two-class model is
no better than the dimensional model. The proportion of datasets
out of 10,000 in which the BLRT was significant is provided; a
value � .50 for a model with k classes would suggest the k-class

model fit the data better than the model with k – 1 classes. In each
case, tests of the two-class model were always significant (p �
1.00), indicating consistent evidence of at least two classes rather
than dimensional structure. The results suggested a three-class
solution for both the one-class and five-class datasets. The diag-
nostic efficiency statistics provided are based on the BLRT’s
overall accuracy at detecting the number of classes.

Discussion

Research into latent structure tends to focus largely on structural
modeling. Thousands of studies have been published in which
some modeling technique, such as confirmatory factor analysis,
item response theory, or cluster analysis, is applied to a set of data.
Investigations into structure type that precede model estimation
may in some cases be just as important (see also Markon &
Krueger, 2006). Provided a case can be made for a construct’s
being potentially categorical (see Lenzenweger, 2004), the study
of latent structure is optimally a two-stage process, in which the
goal of the first stage is to determine the latent structure type
(dimensional vs. categorical). Once the structure type is identified,
the researcher can reasonably choose among the structural mod-
eling techniques appropriate to that structure type to estimate the
number of dimensions or classes and corresponding parameters
(one might also recommend demonstration of both dimensional

Table 4
Results From Finite Mixture Modeling

Structure M BIC � BIC p(p � .05) Sens Spec PPP NPP

1 class .00 1.00 .00 1.00
2-class test 24,384.4 1.00
3-class test 24,046.4 338.06 .75
4-class test 23,976.6 69.73 .00
5-class test 23,971.7 4.99 .00

2 classes 1.00 .88 .67 1.00
2-class test 29,961.0 1.00
3-class test 29,794.5 166.51 .00
4-class test 29,749.1 45.41 .00
5-class test 29,714.1 34.99 .00

3 classes .75 .89 .27 .89
2-class test 33,002.3 1.00
3-class test 32,154.8 847.5 .75
4-class test 32,062.9 91.92 .00
5-class test 32,020.2 42.7 .00

4 classes .75 1.00 1.00 .94
2-class test 36,397.5 1.00
3-class test 34,604.9 1792.56 1.00
4-class test 34,233.3 371.59 .75
5-class test 34,103.3 130.02 .00

5 classes .00 1.00 .00 .80
2-class test 39,114.6 1.00
3-class test 36,408.3 2706.38 1.00
4-class test 35,681.5 726.75 .00
5-class test 35,296.1 385.38 .00

Note. Datasets reflecting one to five classes were tested for two to five
classes. Diagnostic efficiency statistics are based on bootstrapped likeli-
hood ratio test results. M BIC � mean Bayesian Information Criterion; �
BIC � change from previous model; p(p � .05) � the probability of a p
value � .05 across 10,000 datasets for the bootstrapped likelihood ratio
test; Sens � sensitivity; Spec � specificity; PPP � positive predictive
power; NPP � negative predictive power.
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structure and unidimensionality before the use of standard item
response theory statistics).

The present study in combination with Walters et al. (2010)
suggests that taxometrics can serve as a general strategy for
distinguishing between dimensional and categorical structure
types. In fact, the CCFI proved to be a better predictor of the type
of structure in this study than finite mixture modeling. These
findings are consistent with research suggesting that the taxometric
method is particularly effective at differentiating between dimen-
sional and dichotomous structure (e.g., Cleland, Rothschild, &
Haslam, 2000; Frazier, Algorta, Youngstrom, & Ruscio, 2011) and
that the mean CCFI is an accurate index of dichotomous structure
(Ruscio et al., 2010).

Three limitations of the study are worth noting. The categorical
structure represented here involved separation of classes along a
single dimension. This is the condition for which the taxometric
method is optimally suited as a technique for distinguishing be-
tween dimensional and categorical structure. However, categories
can also appear as a set of locations on multiple dimensions. Other
methods such as cluster analysis are more effective at detecting
class structure under such circumstances. The researcher needs to
evaluate the likely nature of the categorical structure before iden-
tifying an optimal procedure for attempting to distinguish categor-
ical from dimensional structure. Similarly, dimensional datasets
were consistently unidimensional in structure, which is the situa-
tion for which the taxometric method was designed. It is an
empirical question yet to be addressed how well it would fare
compared with alternatives in cases of multidimensional structure.

Second, the generalizability of our findings beyond the bound-
aries of the scenarios we studied is uncertain. Our datasets were
limited to no more than five classes, because we suspect that data
structures involving six or more groups are rare, but given that the
mean CCFI achieved high levels of predictive power in the sce-
narios evaluated we would expect similar hit rates for even more
complex categorical structures. The manifest variables we gener-
ated were multivalent, whereas many extant studies of latent
structure use variables of limited range such as individual items as
indicators. Walters and Ruscio (2009) found that indicators com-
posed of four or more ordered levels were adequate for the purpose
of discriminating between dimensional and dichotomous latent
structures using MAMBAC and MAXCOV. Because the present
study evaluated an iterative application of the taxometric method
to that discrimination, even items of limited range are likely to
produce adequate results. Another factor to consider in determin-
ing whether taxometric results are likely to be accurate is Meehl’s
(1995; see also Ruscio et al., 2010) recommendation to limit
taxometric analyses to indicators with within-group correlations
between indicators of � .30 and between-group separations of d �
1.25 (though these criteria are often impossible to ensure ahead of
time in practice). Finally, the current study was restricted to
samples of 1,000–3,000, which are relatively large. Ruscio et al.
(2010) suggested samples of at least 500 when the latent structure
is dimensional but samples of only 300 or less for dichotomous
latent structure. We hypothesize, then, that samples as small as 500
may be adequate for detecting dimensional or categorical structure,
but the minimum increases as the anticipated number of classes
increases.

Third, the use of taxometrics to estimate the number of classes
in a categorical latent structure can result in excessively high error

rates. However, this problem seems to be reduced if the outcome
is averaged over a large series of datasets.

As noted earlier, some studies have evaluated treating values in
the range of .45 to .55, or .40 to .60, as representing an ambiguous
outcome for the CCFI. An ambiguous outcome by definition
means the researcher cannot draw any conclusion about structure,
and researchers in practice are unlikely to accept a decision-
making algorithm that renders the results uninterpretable. In the
current circumstances, we found that the application of an ambig-
uous interval in the context of a multistep analysis resulted in a
large number of uninterpretable datasets. As an alternative, we
would suggest that decisions based on values further from the
natural cut score (.50) may merit a greater sense of subjective
confidence in the decision than is true for those close to that value.

Once the taxometric method identifies a latent structure as
categorical, other statistical methods may be superior at estimating
parameters of the structural model such as the number and base
rate of classes. Error rates for taxometric classification were small
after Step 1 (see also Ruscio et al., 2010) but could be expected to
increase with additional data analysis steps. On the other hand, the
same should be true for any procedure that attempts to classify
cases into four or six classes rather than two. There is very little
literature currently available on the relative accuracy of different
techniques for classifying cases into classes (see Beauchaine &
Beauchaine, 2002).

Contrary to earlier speculations (e.g., Meehl, 1999; Ruscio &
Ruscio, 2002), the iterative taxometric method is not an accurate
approach to building a polytomous structural model at the level of
the individual dataset. It is also somewhat complicated to imple-
ment (though R code for the conduct of taxometric analyses could
easily be updated to perform iterative analyses when results sug-
gest categorical structure), requires a large sample size, is greatly
affected by base-rate inaccuracy, and can lead to conflicting re-
sults. A more serious issue is that it ultimately results in analyzing
and dichotomizing uncomfortably small groups even when one
starts out with a large sample size. We would conclude that the use
of iterative taxometric procedures is optimal when used in con-
junction with alternative procedures such as finite mixture mod-
els,8 recognizing that the taxometric method tends to overestimate
the number of classes.

Despite the limitations noted in its use to determine the number
of classes or class size in a categorical construct, taxometric
analysis—using the mean CCFI as a criterion—may be a partic-
ularly accurate basis for decisions about dimensional versus cate-
gorical structure. We close with what we consider to be our most
important point, which is that structural modeling should occur
only after consideration of whether alternative hypotheses about
the structure type are viable. Once structure type is identified, then
the relevant structural modeling procedures can be applied with
sound justification. The common practice of applying structural
modeling techniques to data without a firm justification for assum-
ing that the relevant structural type applies is unjustified and
potentially misleading.

8 Cluster-analytic alternatives could also be mentioned as first-line in-
dicators, but those methods can also be problematic (McGrath, 2008).
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