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When Effect Sizes Disagree: The Case of r and d
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The increased use of effect sizes in single studies and meta-analyses raises new questions about
statistical inference. Choice of an effect-size index can have a substantial impact on the interpre-
tation of findings. The authors demonstrate the issue by focusing on two popular effect-size
measures, the correlation coefficient and the standardized mean difference (e.g., Cohen’s d or
Hedges’s g), both of which can be used when one variable is dichotomous and the other is
quantitative. Although the indices are often practically interchangeable, differences in sensitivity
to the base rate or variance of the dichotomous variable can alter conclusions about the magnitude
of an effect depending on which statistic is used. Because neither statistic is universally superior,
researchers should explicitly consider the importance of base rates to formulate correct inferences
and justify the selection of a primary effect-size statistic.
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In recent years, behavioral researchers have witnessed an
important change in what is considered optimal statistical
practice. With growing awareness of the differences between
statistical and practical significance, the importance of power
analysis for significance testing, meta-analysis as an integrative
strategy, and the limitations of significance testing (e.g., Har-
low, Mulaik, & Steiger, 1997; Thompson, 2002), recommen-
dations for incorporating effect-size estimates into statistical
analyses have become more definitive. For example, the fourth
edition of the Publication Manual of the American Psycholog-
ical Association (American Psychological Association [APA],
1994) “encouraged” authors to report effect sizes in statistical
analyses (p. 18). By 1999, Leland Wilkinson and the APA
Task Force on Statistical Inference wrote “always present
effect sizes for primary outcomes,” and “we must stress . ..
that reporting and interpreting effect sizes in the context of
previously reported effects is essential to good research” (p.
599). In response to this recommendation, the most recent
edition of the APA Publication Manual (APA, 2001, p. 25)
indicates the reporting of effect sizes is “almost always neces-
sary.” More than 20 journals in the field of behavioral research
now require authors to report effect-size statistics, at least for
key statistical analyses (a list is provided at http://www.
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coe.tamu.edu/~bthompson). It is no longer considered suffi-
cient to ask of an effect or relationship: “Is it there?” It is
increasingly considered essential to also ask “How much is
there?” and sometimes even “Is it enough to care?”

The purpose of this article is to examine an important but
often overlooked complication to the use of effect sizes. De-
pending on the character of the variables under investigation,
the researcher may have several reasonable choices of effect-
size measures. However, because alternative statistics describe
the relationship between two variables in different ways, they
can lead to different conclusions about the size or importance
of that relationship, even when one effect-size measure can be
directly converted into the other. This represents a significant
obstacle to the objective interpretation of research findings.

To illustrate the problem, we focus on a comparison of
two popular effect-size measures used to examine relation-
ships between a dichotomous and a quantitative variable,
Cohen’s d and the point-biserial correlation coefficient (r,,,,).
They were chosen for several reasons. First, they are famil-
iar to most researchers and are among the most commonly
used effect-size measures in meta-analytic investigations in
the behavioral sciences. Though new effect-size measures
continue to be introduced, many if not most research studies
continue to rely on these well-known statistics. Second,
unlike many effect-size statistics, benchmarks for interpret-
ing the size of these effects have been proposed (Cohen,
1988) and widely adopted. Though there are some problems
with these benchmarks, discussed below, their existence
enhances the illustration of the issues involved. Third, r,,
and d are mathematically appropriate to the same universe
of analytic situations. Fourth, formulas are readily available
for converting one measure to the other, which fosters the
impression they are interchangeable, even though they may
lead to very different conclusions about the same data.
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Computational Issues

Cohen’s d conceptualizes relationships between dichoto-
mous and quantitative variables in terms of the difference
between the quantitative variable means for the two groups
defined by the dichotomous variable. This difference is stan-
dardized by using the within-group standard deviation pooled
across the two groups. Cohen’s d is particularly popular in
experimental and quasi-experimental research in which a dif-
ference in the effect of a treatment or manipulation on group
means is considered important. The standardized mean differ-
ence actually encompasses a set of related statistics, the pre-
sentation of which is unfortunately complicated by discrepan-
cies in the symbols used by different authors. The lack of
standardization in the literature may reflect the relative recency
of interest in these statistics. In an effort to clarify this and
future discussions of standardized mean differences, Table 1
summarizes symbols used in five key discussions of these
statistics and our recommendations for a standard.’

The standardized mean difference in the population is
computed from the following formula:

=1, (1

where ., and ., designate the means for the two popula-
tions represented in the sample by the two groups, whereas
0.; is the standard deviation for either population under the
assumption of equal variances. The corresponding formula
for the sample standardized mean difference is

;.] - ?.2
= (2)

pooled

where Y., and Y., designate the means for the two groups.
Spooea Tefers to the standard deviation generated by sum-
ming together the sums of squares for the two sample
groups, dividing by N (the total sample size), and taking the
square root of the resulting variance. Hedges and Olkin
(1985) noted this formula for d also provides the maximum
likelihood estimate of & for a sample.

In practice, sample estimation of & is usually based on the

least squares estimator:

(Y, — Y,) N -2
g= 2 :dV N (3)

O-pooled
G pootea iNVOlves dividing the pooled sums of squares by N —
2 instead of by N. Dividing the pooled sums of squares by
N — 2 corrects for bias in the sample estimate of o,
whereas dividing it by N is consistent with the definitional
formula of a standard deviation. 6 is probably the most
common quantity used for purposes of inference in general,
and the meta-analysis of group differences in particular.
This is because effect sizes are often computed by using
variances or standard deviations generated by statistical

software such as SPSS and SAS, which by default calculate
G, with N — 1 in the denominator, rather than S, with N in
the denominator. Hedges and Olkin (1985) demonstrated
that g is a biased estimator of 3. The best sample estimate of
d can be approximated by using the following formula (as
simplified by Hunter & Schmidt, 2004):

)

8_N—2%:

N-3 )\ IN-2
4N—2QJV N - “)

The existence of three sample statistics for computing the
standardized mean difference can lead to confusion, especially
given discrepancies in the use of labels. In the following, we
focus primarily on d, as defined in Equation 2, for several
reasons. The three sample statistics differ only slightly and
converge as sample size increases. The relatively small prac-
tical difference between formulas may also explain why the
sample correlation coefficient, which is also a biased statistic
(Fisher, 1915), is rarely corrected in practice.2 In addition, the
use of the descriptive rather than inferential versions of both d
and r,,,, simplifies the formulas used to relate the standardized
mean difference to r,,,. At the same time, the issues illustrated
in this article that use d apply equally to the whole family of
standardized mean differences presented in Table 1.

The correlation coefficient is a particularly popular effect
size in observational studies or individual differences re-
search in which the goal is to estimate the validity of one
variable as a predictor of the other or the magnitude of
association between two variables. Because common sym-
bols for the population (p) and sample (r) correlations are
generally accepted, the discussion moves directly to the
point-biserial correlation, which is simply the standard
Pearson product-moment correlation coefficient applied to
the case of a dichotomous and a quantitative variable. The

! There are other versions of standardized mean difference statistics
as well. The statistic developed by Glass (1976), which divides the
mean difference by the standard deviation of the control group, is
excluded as it is generally considered inferior to those considered here
(e.g., Hunter & Schmidt, 2004). We only include formulas that
assume equality of variances in the two populations, as these are the
most commonly used in practice. With unequal variances, the con-
versions provided between r,,, and d are not exact.

2 The unbiased estimate of the population correlation, p, is given
by the adjusted r,

~ 1-AWN-1)
T =\l = =5

where N indicates the total sample size. This equation is the
simplified version of the more familiar R, formula used in
multiple regression,

RM—JP—“_RXN_U

adj

N—k—1 7~

where £ is the number of variables predicting the criterion variable.
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Table 1

Comparison of Symbols Used for Standardized Mean Difference Statistics

Sample statistics

Pooled within
sample sums of
squares divided by:

Corrected
Study Parameter N N-—2 for bias

Cohen (1988) d d,

Hedges & Olkin (1985) d 5° g d
Hunter & Schmidt (2004) d d* d d*
Lipsey & Wilson (2001) ES),

Rosenthal (1991) d d g g"
Recommended d d g d

“ Discussed only as the maximum likelihood estimate of the population value.

r,, conceptualizes relationships in terms of the degree to
which variability in the quantitative variable and the dichot-
omous variable overlap.

One standard formula for the point-biserial correlation as
a descriptive rather than inferential statistic is as follows:

(Y,— Y,
Tpp = %VPIPZ- (5

Sy is the standard deviation generated by dividing the total
sums of squares for the quantitative variable by N. When Y.,
# Y,, Sy is larger than S, ., the standard deviation used
to compute d (Equation 2), and the size of the difference
between the two standard deviations is directly related to the
size of the difference between the means (demonstrated in
the Appendix). As a result, the correlation is bounded within
the interval —1.00 to 1.00.> The formula also includes the
terms p, and p,, which indicate the base rates or proportions
of participants in each of the dichotomous variable groups,
with p, = 1 —p,.

The Effect of Base-Rate Inequalities

The reason d and r,,, can lead to different conclusions can
be demonstrated several different ways. As the difference
between p, and p, in Equation 5 increases, their product
becomes smaller, so r,, decreases. Because p; and p, are
not part of the formula for d, the latter statistic is unaffected
by base-rate disparities. As a result, d and r,, differ mark-
edly in terms of the degree to which they are affected by the
base rate for the two values of the dichotomous variable.
Thus, rpp Can be understood as a base-rate-sensitive effect-
size measure, whereas d is base-rate-insensitive.

This difference in sensitivity to base rates can also be
stated in terms of the variance of the dichotomous vari-
able. Because the variance of this variable is a function of
the product of the base rates (i.e., with the dichotomous

groups coded as two consecutive numbers such as 0 and
1,8%=p,p,and Sy = \/]sz), variance is maximized when
p; = p> = .50. As the proportions become more discrep-
ant, the variance of the dichotomous variable becomes
smaller (see Figure 1, left vertical axis), resulting in a
decline in the value of the correlation similar to that
resulting from range restriction. Thus, rather than saying
r,, is base-rate-sensitive and d is base-rate-insensitive,
one could just as readily state that r,, is a variance-
sensitive effect-size measure, whereas d is variance-in-
sensitive. In this case, it is important to remember that the
variance referred to is that of the dichotomous variable
not the within-group or total variance for the quantitative
variable. Goodman (1991) also suggested the terms mar-
ginal-dependent and marginal-free to represent the two
classes of statistics.

In pursuit of making the difference between d and r,,
even clearer, the standard formulas can be modified to
illustrate the two critical distinctions:

_ (171 - ?2)

d=-—5— (6)
\ S pooled

and

3 The true possible range of the point-biserial correlation is
actually smaller. No correlation can reach a value of 1.00 unless
the two variables have the same distribution. Because quantitative
and dichotomous variables by definition have different distribu-
tions, the true range for the point-biserial correlation is always less
than 1.00 to —1.00 and varies depending on the distribution of the
quantitative variable. For example, Nunnally and Bernstein (1994)
reported the point-biserial correlation is restricted to the interval
from —.79 to .79 if the quantitative variable is normally distributed
and continuous.
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Figure 1. The left vertical axis indicates the variance of the
dichotomous variable as a function of p, p,. This quantity reaches
its maximum (.25) when p, = p, = .50. The right axis indicates
the relative power of d as a function of p, p,. These values are four
times those in the left axis.

(?1 - Y/2)
Tpb = 2 . (7)
pooled — T \2
+(Y,— Y
\/ o Yy =Y,

Equation 7 may be unfamiliar, so its derivation is provided
in the Appendix. Now the denominator in both cases is
based on Sﬁooled. The inclusion of the differences between
the means in the denominator of Equation 7 serves to place
r,, on a scale that ranges from —1.00 to 1.00, in contrast
with d, which is unbounded. The equation also highlights
the less commonly known distinction, which is that the
pooled variance is divided by p,p, in the computation of r,,,,.
As the difference between p; and p, increases, the value by
which Sfmolad is divided becomes smaller, as does r,, when
compared with d.

Still a third approach to understanding the latter differ-
ence between d and r,, is available by using the standard
formula for converting from d to the correlation coefficient
(Lipsey & Wilson, 2001),*

d
Tpp = T ®)

1
d* +
PiP2

As in Equation 7, the denominator repeats the numerator
term to restrict values to the range —1.00 to 1.00. Inclusion
of the inverse of the product of the base rates means that for
any value of d, the corresponding r,, gets smaller as the
base rate becomes more extreme. In contrast, the formula
for converting from r,, to d is as follows:

A= ©)

y(l - V,zlb)Plpz.

In this case, the product of the base rates produces a smaller

denominator term as the rates become more disparate,
which produces a corresponding increase in d.

What are the practical implications of the differential
sensitivity that r,,, and d have to the base rate or variance of
the dichotomous variable? If schizophrenia only occurs in
1% of the population, a base-rate-sensitive effect size takes
into account the heightened difficulty of differentiating or
predicting this rare event, such that the magnitude of the
effect is much smaller than it would be if instead schizo-
phrenia occurred in 50% of the population. As a result, to
obtain an accurate base-rate-sensitive effect size that will
generalize to the population, researchers must ensure that
sample base rates mirror the population base rates. In con-
trast, a base-rate-insensitive effect size treats the base rate
(or variance) of the dichotomous variable as irrelevant. In
the case of schizophrenia, a base-rate-insensitive effect size
would be of similar magnitude regardless of whether the
disorder affected 1% or 50% of the population and, thus,
regardless of whether it was generated from a sample in
which 1% or 50% of the participants met criteria for the
diagnosis.

For fixed values of p, and p,, the choice between r,,, and
d is arbitrary with respect to the rank ordering of effect-size
values. If the d value relating dichotomous variable X to
quantitative variable Y is larger than the d value relating X
to quantitative variable Z, then the correlation between X
and Y must also exceed the correlation between X and Z. To
state this principle more generally, if there are two pairs of
dichotomous and quantitative variables, and the base rates
for the dichotomous variables are the same, then the rank
ordering of the two correlations will be the same as the rank
ordering of d values. However, this relationship dissolves
once the dichotomous variables differ in terms of their base
rates.”

Table 2 demonstrates both these points. For a given value
of p, and p,, a larger d value is consistently associated with

4 This equation offers a good example of some of the confusion
that has resulted from inconsistency in the use of symbols associ-
ated with the standardized mean difference statistics. Aaron,
Kromrey, and Ferron (1998) considered the formula provided in
the text for computing r from d to be inaccurate and offered the
following alternative:

_ d

vy, =  T———,
”b N’ — 2N
&+ —

nn,

where n, and n, refer to the group sizes. However, the Aaron et al.
formula is actually the correct formula for converting g to the
correlation coefficient. Once the use of symbols is clarified, the
discrepancy is resolved. The formula here converts g to r,,;
equation 8 in the text converts d to r,,.

5 Kraemer et al. (1999) demonstrated this principle holds for
other effect-size statistics as well.
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Table 2
Conversions Between d and r,,, as a Function of Differences in
Base Rates or Variance

Variance of the

Base-rate dichotomous

disparity variable Dy D> d T
Large d

Large Small 98 .02 0.80 A1

Moderate Moderate 75 25 0.80 33

None Maximum .50 .50 0.80 37

Medium d

Large Small .98 .02 0.50 .07

Moderate Moderate 75 25 0.50 21

None Maximum .50 .50 0.50 24
Small d

Large Small .98 .02 0.20 .03

Moderate Moderate 75 25 0.20 .09

None Maximum .50 .50 0.20 .10

a larger Top value. For example, when p, = .75, a d of 0.80
is associated with b of .33, whereas a d of 0.50 is associ-
ated with r,, of .21. Thus, when p, is constant, the rank
ordering of effect sizes is preserved across the two mea-
sures.

This relationship no longer exists when p, varies across
analyses. For instance, consider the first three rows in Table
2 when p; = 98, d = 0.80 is associated with r,, = .11.
However, as p, approaches .50, r,, increases so that r,, =
.33 when p, = .75, and r,, = .37 when p; = .50. Even
though d did not change, r,, increased when the difference
in base rates was less extreme. Furthermore, what is often
considered a large d value (i.e., 0.80; Cohen, 1988) is
associated with a small value for r (i.e., .11), when the
probability of one of the two dichotomous values is only
.02. A base rate of .02 (2 cases per 100) may seem like an
extremely rare outcome, but in fact it is not. For instance,
many psychiatric conditions have a prevalence of .02 or less
in the general population, including dysthymia, agorapho-
bia, panic disorder, bipolar disorder, schizophrenia, any
drug use disorder, or any specific personality disorder (Nar-
row, Rae, Robins, & Regier, 2002; Torgersen, Kringlen, &
Cramer, 2001). The same is true for numerous medical
conditions. For example, a recent study found that 2.3% of
older males with normal levels of prostate-specific antigen
had a serious form of prostate cancer upon biopsy (Thomp-
son et al., 2004). It is also likely that many social and
experimental phenomena commonly studied by psycholo-
gists are similarly infrequent, though—as we discuss be-
low—it is often difficult to estimate the true frequency of
these events.

Table 2 demonstrates another impediment to achieving
comparable results with r,, and d, though not for mathe-
matical reasons. Many users of Cohen’s (1988) benchmarks
seem unaware that those for the correlation coefficient and

d are not strictly equivalent, because Cohen’s generally
cited benchmarks for the correlation were intended for the
infrequently used biserial correlation rather than for the
point biserial. This creates a slight advantage for d over r in
terms of the characterization of effect sizes when those
benchmarks are used for other types of correlation coeffi-
cients. For example, as demonstrated in the table, when base
rates are equal, the d value Cohen suggested as large (0.80)
corresponds to an Top value of .37, far less than his com-
monly cited benchmark for a large r value (.50). To achieve
comparability between r,, and d when base rates are equal,
the benchmarks for small, medium, and large correlations
would need to be changed to .10, .24, and .37, respectively
(Cohen, 1988, pp. 22, 82; Lipsey & Wilson, 2001, p. 147).
Alternatively, to equate d with F s the benchmarks for d
would need to be changed to 0.20, 0.67, and 1.15, respec-
tively. The former would seem the better option, as surveys
of the empirical literature suggest that the Cohen bench-
marks are in fact too high for correlation coefficients in
general, considering the magnitude of effects commonly
found in research (Hemphill, 2003; Richard, Bond, &
Stokes-Zoota, 2003).

Base rate or variance sensitivity is a feature of many other
statistics besides correlations. In fact, all hypothesis testing
statistics (e.g., t, Xz’ F) are base-rate-sensitive. This means
that base-rate-sensitive effect-size statistics more accurately
track the power of hypothesis tests than do base-rate-insen-
sitive effect sizes. For example, as the difference between p,
and p, increases, the value of the independent groups ¢
test—and therefore its power—declines for a given mean
difference. The point-biserial correlation also declines, but d
does not. The following equation for ¢ helps to illustrate to this
relationship (equivalent to Rosenthal, 1991, Equation 2.6),

(17~1 - Y/2)

t =
“n Spvaled

y(df)l’lpza (10)

where the new term, df, indicates the degrees of freedom (N
— 2). This equation can be considered in light of both the
structurally similar Equation 2 for computing d and Equa-
tion 5 for computing r,,. Equation 10 differs from both the
preceding equations in the inclusion of the degrees of free-
dom, in that 7 values increase as degrees of freedom increase
for a given mean difference. The only other difference from
the r,, formula is the inclusion of S, in the denominator
rather than S,. As noted previously, the latter bounds r in the
range —1.00 to +1.00; ¢ is not similarly bounded.

With respect to d, the only other difference from Equation
2 is the standard deviation of the dichotomous variable. As
with r,,, t is reduced to the extent that p, and p, are
discrepant for a given mean difference. As the base rates for
the dichotomous variable become more disparate or, equiv-
alently, as the variance in the dichotomous variable be-
comes more restricted, 7 declines even though the magnitude
of the standardized mean difference is unchanged.



WHEN EFFECT SIZES DISAGREE 391

Though we are restricting our discussion of the impact of
base rates to the case of d and r,,, it is noteworthy that the
base-rate issue has broader implications. The negative effect
of disparate base rates on the probability of correct infer-
ences in clinical settings (e.g., Dawes, 1962; Meehl &
Rosen, 1955) and correct classifications in selection (e.g.,
Rorer, Hoffman, LaForge, & Hsieh, 1966; Schmidt, 1974;
Taylor & Russell, 1939) has been known and discussed for
years. However, the effect of base rates on effect sizes is
probably less familiar. Among effect-size measures appro-
priate to cases in which both variables are dichotomous, the
odds and risk ratios are relatively insensitive to the base rate
of the predictor variable, as are sensitivity and specificity,
whereas the correlation (phi) coefficient, chi-square, abso-
lute risk reduction, and the number needed to treat are base
rate sensitive (for descriptions of these statistics, see Barratt
et al., 2004; Streiner, 2003).

Other statistics are base rate sensitive, but the impact of
their sensitivity varies. Positive predictive power (PPP) is a
diagnostic efficiency statistic used in circumstances where
both a predictor and outcome variable are dichotomous
(Streiner, 2003). When a diagnostic screen is conducted for
lung cancer, the PPP of the test is the probability that a
person has cancer if the test finding is positive. PPP is
affected by the degree to which base rates are unequal in the
outcome variable: The lower the probability of cancer in the
population of interest, the lower the PPP. If the test were
used in a population in which the majority had cancer, PPP
would be greater. The opposite is true for negative predic-
tive power (NPP), which is the probability that an individual
does not have cancer if the test is negative (Streiner, 2003).
NPP is higher when cancer is rare and lower when it is
common.

The kappa coefficient—a reliability statistic often used
when both variables are dichotomous—is also base-rate- or
variance-sensitive, though the impact of a discrepancy in the
marginal distributions is more idiosyncratic (Streiner,
2003). If two raters consider the same of two options to be
the less likely, the value of kappa will on average be
reduced, with the reduction increasing as the base rates of
the ratings become more unequal. If both raters use one
option infrequently, but differ in terms of which they con-
sider the infrequent option, the value of kappa instead
increases on average (Zwick, 1988). Furthermore, unless
the sample size is very large, kappa can become extremely
unstable if the base-rate inequality is severe, varying be-
tween very low and very high values across samples.

Meta-Analytic Examples of Inconsistent Inferences
From r and d

Real-world research in meta-analysis can be used to dem-
onstrate the impact of unequal base rates on the interpreta-
tion of findings. Christensen, Hadzi-Pavlovic, and Jacomb
(1991) reported an average effect size of d = 1.87 for the

use of neuropsychological tests to differentiate patients with
dementia from normal controls. The authors did not report
the base rate of dementia in their primary studies, but this
would translate into r,,, = .68 if the dementia base rate was
.50. In contrast, if one assumed a more likely dementia base
rate of .10, the average correlation would drop to r,,, = .49.
In a screening setting where the base rate of dementia
matches that in the general population over age 65 (3%), the
average validity of neuropsychological tests to differentiate
patients with dementia from normal controls would drop to
r, = .30 (Meyer et al., 1998).

Table 3 provides examples of effect-size estimates that
were summarized in a previous article (see Meyer et al.,
2001). Each entry provides the results of a meta-analysis or
a series of studies that used one dichotomous variable and
one variable treated as quantitative. They were chosen for
use here because the original reference allowed r and d
values to be computed for each study and because the
studies afforded a spectrum of base rates.

The mean effect sizes were reported as r values by Meyer
et al. (2001). To illustrate the impact of base-rate or vari-
ance sensitivity, we also computed d. In addition, we used
standard formulas (Rosenthal, 1991; Rosenthal, Rosnow, &
Rubin, 2000) to generate estimates of what r would equal if
base rates were not a factor and what d would equal if they
were. A version of r unaffected by the base rates was
generated from d by acting as if p, were equal to p,. An
artificial version of d that is affected by base rates was also
computed. Instead of using Equation 9, which would cor-
rectly convert r to d, we computed a d value directly from
the actual base-rate-sensitive r values without correcting for
discrepancies in the base rates (see the note to the table for
more details). Table 3 also indicates the percentage differ-
ence in effect-size magnitude when the impact of base rate
on r is eliminated, and when base rates influence the value
for d.

The findings in Table 3 are ordered by the base rate of the
targeted condition, which makes the impact of base-rate
sensitivity readily apparent. For example, Entry 1 indicates
that only 1 in 100 psychiatric patients ultimately committed
suicide. Under these conditions, » would increase by 342%
(more than quadruple) if it were computed like d, without
regard to the actual frequency of suicides or as if half the
patients committed suicide. Conversely, the value of d
would decrease by 79% if d were as sensitive as r to the
infrequency of suicide in the population.

In contrast, when the base rate of a target condition (or its
complement) represents about 30-50% of the population
under study, the differences between r and d are not partic-
ularly notable. For instance, the mean base rate of cognitive
impairment across samples was .37 in Forster and Leck-
liter’s (1994) meta-analysis that examined the ability of the
Halstead—Reitan neuropsychological battery to detect cog-
nitive impairment in children (Table 3, Entry 4). In this
case, base-rate-sensitive and insensitive effect sizes differed
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Table 3

McGRATH AND MEYER

Examples From Meyer et al. (2001) of the Impact of Base-Rate Sensitivity on Effect Sizes

Effect-size estimates

r d
Study Estimate if Estimate if
base Actual  base-rate %o Actual  base-rate %o
Study description rate  value insensitive change value sensitive  change
1. Suicide predicted by Beck Hopelessness Scale scores in
psychiatric patients (Beck et al., 1985, 1990). .013 .077 341 +341.7 0.727 0.156 —78.6
2. Development of breast cancer predicted by
denial/repressive coping style (McKenna et al., 1999). .077 .033 075 +129.3  0.151 0.067 —55.7
3. Suicide attempts and serotonin metabolites in cerebrospinal
fluid in psychiatric patients (Lester, 1995).* 171 217 .265 +21.8 0.771 0.496 —35.8
4. Differentiating impaired versus control children with
Halstead—Reitan Neuropsychological Tests (Forster &
Leckliter, 1994).° .370 321 353 +9.9 0.800 0.707 —11.6
5. Detecting malingered psychopathology with MMPI validity
scales (primarily from analog studies, Berry et al., 1991;
Rogers et al., 1994).>< 542 741 746 +0.7  2.675 2.633 —1.6
6. Detecting underreported psychopathology with MMPI
validity scales (primarily from analog studies, Baer et al.,
1992).° .621 .387 .389 +04 0944 0.940 -0.5

Note.

Criterion variables were all dichotomous. Base-rate and effect-size values are averages weighted by sample size. Transformations from one effect

size to the other were computed on the original study findings not on the values presented in the table. The estimate if base-rate-insensitive r values were
computed from the actual d values by using the formula r = d/(d*> + 4)"?. This equation falsely assumes the base rates were equal. The estimate if
base-rate-sensitive d values were computed from the actual r values by using the formula d = 2r/(1 — *)"?. % change was computed from nine-digit
summary effect-size values and not the three-digit values reported in the table. MMPI = Minnesota Multiphasic Personality Inventory.

# An error with one effect size in the original meta-analysis was corrected.
the two groups of interest.

by only about 10%. However, it is important to recognize
that for purposes of enhancing power, researchers often
oversample target cases or use equal-sized target and con-
trol groups, which may seriously underestimate the degree
of base-rate inequality in the population. For instance, it is
questionable whether 37% represents a reasonable estimate
of how frequently cognitive impairment occurs in many
applied settings. If testing was being conducted in an edu-
cational setting in which just 10% of the children were
expected to have some form of cognitive impairment, the
validity coefficient should drop from r = .32 to r = .23.
A similar analysis can be applied to the experimental
study of psychological phenomena, though the comparison
is often complicated by the lack of information about the
true base rates for the events studied. To illustrate, we
provide an example from social psychology. Carlson, Mar-
cus-Newhall, and Miller (1990) presented a meta-analysis
of studies investigating whether aggressive cues facilitate
aggressive responding in negatively toned situations. They
found that aggressive responding was greater when a
weapon was present than when it was not, as long as there
was no evidence the participants were aware of the research
hypothesis; the mean d value was 0.31. Most of the studies
they cited used equally sized groups, even those Anderson,
Lindsay, and Bushman (1999) later classified as field stud-
ies that should generalize to everyday life. Because these

® The base rate indicated is not a natural base rate; these studies overselected one of
¢ r was computed from d. In the other studies, both r and d were computed directly from descriptive or inferential statistics.

experiments were intended to provide insight into actual
social phenomena, it is reasonable to ask how well the
presence of a weapon predicts the intensity of aggression in
the real world, a question that is usually addressed using r
rather than d. However, to do so would require an estimate
of the base rate for a weapon cue in society at large. It would
be difficult to do so precisely, though the base rate is
undoubtedly less than .50. Figure 2 indicates how the mean
correlation would decline as the base rate of a weapon cue
decreases from the .50 value used in these experiments to
almost 0. The estimated correlations suggest that the degree
to which a weapon cue accounts for the intensity of aggres-
sive acts, and therefore its importance as a real-world pre-
dictor of aggression, varies as a function of its frequency in
the population. This cannot be estimated accurately from
experimental designs with artificially equated base rates or
from base-rate-insensitive effect sizes. However, as will be
discussed later, effectiveness as a predictor is still not the
same thing as importance as a risk factor.

Is Base-Rate Sensitivity Good or Bad?

Some have argued that base-rate sensitivity reduces the
utility of a statistic. For example, several commentators
have objected to the kappa coefficient specifically because
its base-rate sensitivity often makes the reliability of ratings
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Figure 2. The average d for studies evaluating the facilitation of
aggression by the presence of a weapon among potentially un-
aware participants was 0.31. The corresponding average r de-
creases from a maximum of about .15 to near zero as a function of
decreasing the base rate for the presence of a weapon cue in the
natural environment.

look poor (Brennan & Prediger, 1981; Spitznagel & Helzer,
1985; Zwick, 1988). Others have contended in response that
base-rate sensitivity is appropriate to a reliability statistic
(Bartko, 1991; Shrout, Spitzer, & Fleiss, 1987). As the
base-rate inequality increases, total variance decreases. This
means that measurement error variance will tend to increase
as a proportion of the total variance, and reliability in fact
decreases.

Haddock, Rindskopf, and Shadish (1998) argued for the
odds ratio on the basis of its insensitivity to the distribution
of dichotomous variables. Some researchers have conducted
comparisons of effect-size measures under the assumption
that effect sizes should not be affected by variable distribu-
tions (Hunter, 1973; von Eye & Mun, 2003); others have not
made this assumption (Costner, 1965; Kraemer et al., 1999).
It is not surprising that the former have criticized the cor-
relation coefficient, whereas the latter have been more sup-
portive of its use. For example, Kraemer et al. (1999) were
troubled by the odds ratio’s indirect relationship to power, a
criticism that as noted above can be leveled at d and at all
other base-rate-insensitive effect-size measures.® Compli-
cating matters is the possibility, to be discussed below, that
the purposes of the analysis may be an important factor in
deciding between base-rate-sensitive and insensitive statis-
tics.

Unfortunately, standard texts that behavioral researchers
rely upon for guidance in the use of effect sizes often
provide little or no information about this controversy.
Cohen’s (1988) discussion of power analysis noted the
practical impact that base rates have on the use of power
tables for d as well as the difference in the effect of base
rates on d and r, but he offered no guidance about choosing
between the two options. Lipsey and Wilson’s (2001) guide
to meta-analysis recommends d unequivocally when the
dichotomous variable base rates are markedly different.

Rosenthal (1991) did not address the issue formally, but he
clearly considers r the more useful of the two because of its
greater flexibility for characterizing associations across di-
verse research designs and statistical analyses. However,
even though Rosenthal et al.’s (2000) guide to calculating
effect sizes for linear contrasts emphasizes r, it also includes
many formulas that compute a base-rate-insensitive version
of r. Hunter and Schmidt (2004) recommended adjusting
the point-biserial correlation when base rates are unequal,
though these corrections are not commonly used in prac-
tice.”

Comparing the Merits of r and d

As the preceding discussion suggests, the choice between
a base-rate-sensitive effect size like r,, and a base-rate-
insensitive one like d is not necessarily clear-cut. Below we
summarize arguments supporting the superiority of each.

Advantages of r Over d

1. The relationship between r and power is more
direct.

Though widely criticized, significance testing remains a
critical component of inferential practice in psychological
research, especially for purposes of interpreting results of an
isolated study. Effect sizes are important not only as esti-
mates of the strength of an effect or relationship but also as
a component of power analysis (Cohen, 1988). Given that
all significance testing statistics are base-rate-sensitive, for a
given N there is a direct relationship between r and signif-
icance test results. This is not true for d (Rosenthal, 1991),
where the relationship to power is moderated by the dispar-
ity in group sizes and not just by the total sample size. This
difference suggests that with sample size held constant, r,,;,

¢ Though the statistic has its advocates (e.g., Haddock et al.,
1998; Sanchez-Meca, Marin-Martinez, & Chac6n-Moscoso,
2003), others have been quite critical of various aspects of the odds
ratio (Davies, Crombie, & Tavakoli, 1998; Kraemer et al., 1999;
Sackett, Deeks, & Altman, 1996; von Eye & Mun, 2003). This
probably should be considered a controversial statistic at the
present time.

7 Because of r,,,’s sensitivity to base rates, the biserial correla-
tion has been suggested as a superior statistic to the point-biserial
correlation (e.g., Carroll, 1961), and biserial or polyserial correla-
tions are recommended or even automatically generated for use in
structural equation modeling. However, not only does the biserial
correlation equate base rates in a way that may not generalize to a
real-world population, this statistic requires introducing the as-
sumption of a normally distributed variable underlying the dichot-
omization, which does not apply to truly categorical variables.
Furthermore, inspection of the biserial correlation formula (Cohen
et al., 2003) demonstrates the statistic is still somewhat base-rate-
sensitive.
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is a better indicator of the p value resulting from the corre-
sponding significance test.

It also suggested to us that standard discussions of the
relationship between d and power have been remiss in
overlooking the issue of base rates. Most textbooks ac-
knowledge the impact of total sample size and alpha level
on power. We know of none that includes extreme base
rates in a dichotomous variable in the list of moderators of
the relationship between effect size and power for base-rate-
insensitive statistics, even though it often might be more
important in practice than alpha level. Rosnow, Rosenthal,
& Rubin (2000; Equation 10) provide an index of the
relationship between base-rate inequality and subsequent
loss of power, loss = 1 — (n,/n), where n,, is the harmonic
mean of the group sizes and 7 is their arithmetic mean.
When converted to base-rate notation, the formula indicates
that the relative loss of statistical power from unequal
sample sizes is 1 — 4p, p,. Thus, when base rates are equal,
there is no loss of power [1 — 4(.5) (.5) = 0]. However,
when 95% of the participants are in one group and 5% are
in the other, power declines by 81% [1 — 4(.95) (.05) =
.81]. Because variance in the dichotomous variable is de-
termined by p, p,, it also can be seen that, all other factors
being equal, power is directly proportional to the variances
indicated in Figure 1. That is, power is at a maximum
(and relative loss is at a minimum) in the center of the
figure when p, and p, = .50 but drops precipitously as the
base rates diverge. Thus, Figure 1 simultaneously illus-
trates constraints on the size of T (left vertical axis) and
the relative power associated with d (right vertical axis).
Discussions of power should straightforwardly indicate
the role of base rates in power analysis. In the absence of
this information, the uninformed user can easily overes-
timate the power of the study based on d.

2. ris a more flexible statistic.

The correlation coefficient can be computed for any com-
bination of dichotomous and quantitative variables. This is
an extremely useful characteristic when attempting to make
comparisons across a variety of study designs, as is some-
times the case in meta-analysis. Rosenthal (1991) and col-
leagues (Rosenthal et al., 2000) have provided methods for
the use of r as a general indicator of magnitude that is
applicable in almost any study. This sort of flexibility is
unusual among statistics. Though d can be used when both
variables are dichotomous (Haddock et al., 1998), it cannot
be used when both are quantitative.

The greater practical flexibility of r corresponds to the
broader relevance of the concept of association or relation-
ship versus group differences. In almost any circumstance in
which a researcher is interested in considering two variables
in conjunction with one another, that interest can be con-
ceptualized in terms of an association between the variables.

In contrast, the concept of differences between groups rep-
resents a special case of understanding contingent relation-
ships.

3. ris integral to general linear models.

ris a cornerstone of multiple regression statistics, includ-
ing the standard error of estimate, the regression coeffi-
cient, and the index of association. Indeed, r is central to
the general linear model in all its forms. This relationship
makes r a much more useful statistic than d when the goal
of the analysis is prediction of an outcome (Costner,
1965).

One implication of this relationship is that even a dichot-
omous variable associated with a large d value may not be
a particularly useful predictor when the base rates are very
different. For example, Entry 6 of Table 3 suggests that
individuals who are instructed to underreport pathology on
the Minnesota Multiphasic Personality Inventory (MMPI)
produce validity indicator scores that are on average about
one standard deviation higher (d = 0.94) than those gener-
ated under normal instructions, a large effect. Suppose that
in voluntary psychiatric settings only 2% of respondents
have a vested interest in appearing overly healthy. Faking
then turns out to have little relationship to respondents’
scores (r = .131), even with the same standardized mean
difference. Consequently, in the absence of information
about the true base rate of underreporting, covarying or
removing potentially invalid cases could result in unaccept-
ably small improvements in scale validity (e.g., Piedmont,
McCrae, Riemann, & Angleitner, 2000).

4. ris dependent on base rates, which has interpretive
meaning in applied settings.

It has been suggested that the effect of base rate on the
correlation coefficient can have interpretive value.

Constraints on correlations associated with differences in distri-
bution inherent in the constructs are not artifacts but have real
interpretive meaning. ... The observed correlation between
smoking and lung cancer is about .10 . .. . There is no artifact
of distribution here; even though the risk of cancer is about 11
times as high for smokers, the vast majority of both smokers and
nonsmokers alike will not contract lung cancer, and the rela-
tionship is low because of the nonassociation in these many
cases. (Cohen, Cohen, West, & Aiken, 2003, p. 54)

Similarly, as the proportion of individuals attempting to
underreport on the MMPI declines, the proportion of false
positive cases increases. r,,, changes to reflect this decline in
predictive power. Consistent with the literature on maxi-
mizing the accuracy of diagnostic inferences (e.g., Meehl &
Rosen, 1955), this makes r a more ecologically valid indi-
cator of the effectiveness of the dichotomous variable as a
predictor of the outcome than d when the true base rate is
considered. This is a particularly valuable feature of the
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correlation coefficient as an indicator of the extent to which
one variable can achieve practical utility as a predictor of
another.

Even so, it would be a mistake to use the correlation
coefficient as sufficient evidence of the relative impor-
tance of a risk factor. For example, more than half the
American population is now considered overweight if not
obese (Flegal, Carroll, Ogden, & Johnson, 2002). If the
proportion of overweight adults continues to rise (diverg-
ing more from a base rate of .50), the correlation between
being overweight and medical complications associated
with excess weight in the general population will actually
decline, even as weight continues to increase in impor-
tance as a risk factor.

Advantages of d Over r

1. Mean differences are particularly relevant for ex-
perimental or treatment effects.

Just as the nature of r makes it a more useful statistic
when the goal is to determine the relationship between a
predictor and a criterion, the nature of d makes it a more
useful and readily understood statistic when the goal is
simply to determine the amount of difference in the
impact of two experimental conditions or treatments.
However, as was noted in connection with the discussion
of Figure 2, d is not the best indicator of the overall
societal impact of an intervention if the population of
individuals who receive the treatment is small relative to
the total population.

2. d behaves more intuitively.

The sensitivity to base-rate differences can lead to some
counterintuitive results for r. For example, suppose after
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preliminary analysis a researcher decides to increase the
sample size as a means of increasing power. If the subse-
quent recruitment rate varies across groups and exacerbates
a difference in base rates, the overall correlation can actu-
ally decline as a result of recruiting, though d does not. On
the other hand, a decline in r can be used to warn the
researcher that the sampling method is inefficient.

A second case of base-rate sensitivity producing unex-
pected results can occur when subgroups are combined. In
a recent study (Blanchard, McGrath, Pogge, & Khadivi,
2003), college students completed the MMPI under instruc-
tions either to “fake bad” in a manner appropriate to mimic
the results for someone not guilty by reason of insanity
(forensic feigners) or to achieve psychiatric hospitalization
(psychiatric feigners). These groups were then compared
with psychiatric patients who completed the MMPI under
standard instructions (see Table 4). When forensic feigners
were compared with psychiatric patients on eight indicators
of malingering, the mean d value was 1.98, whereas the
mean d for comparing psychiatric feigners to psychiatric
patients was 2.39. When both groups of feigners were
combined in a composite analysis, the mean d value was
2.20, falling between the two subgroup means as one would
expect.

Across the same eight predictors, the mean correlation
between group membership and scale score was .39 for
forensic feigners and .49 for psychiatric feigners. However,
when the two groups were combined, so that the number of
feigners was doubled, the base rate of feigners increased
from .053 in the forensic condition and .061 in the psychi-
atric condition to .107 in the combined condition. Rather
than falling between the two correlations based on sub-
groups of feigners, because the differences in the base rates
of the dichotomous variable had declined (and the variance

Table 4
An Instance When Combining Experimental Groups Has a Counterintuitive Impact on r,,,
d T
MMPI Forensic Psychiatric All Forensic Psychiatric All
indicator of feigners feigners feigners feigners feigners feigners
“faking bad™* (n=24) (n = 28) (n = 52) (n=24) (n = 28) (n = 52)
F 2.07 2.35 2.24 42 49 57
Fb 1.41 1.71 1.62 .30 .38 45
Ds 2.19 2.54 242 44 .52 .60
Ds-R 1.78 2.22 2.01 .37 47 53
Fp 3.10 3.21 3.16 .57 .61 .70
FBS 0.59 1.41 1.01 13 32 .30
O0-S 1.35 2.04 1.72 .29 44 47
F-K 3.35 3.67 3.44 .60 .66 73
M 1.98 2.39 2.20 .39 49 54
Note. N represents the number of feigners in the analysis. In all cases, the comparison group consisted of 432 psychiatric inpatients, who completed the

inventory under standard instructions. MMPI = Minnesota Multiphasic Personality Inventory. F = Infrequency; Fb = F Back; Ds = Dissimulation; Ds—R
= Dissimulation—Revised; Fp = Frequency-Psychopathology; FBS = Fake Bad; O-S = Obvious—Subtle; F-K = F minus K.

# Blanchard et al. (2003).
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had increased), the mean correlation increased substantially
to .54.8

3. d estimates effects independent of base rates.

A case may be made for base-rate-insensitive statistics as a
general indicator of effect size when the base rate is subject
to change across time and situation. Suppose the goal is to
estimate the degree to which psychotherapy has been help-
ful for depression. If r is used to evaluate the relationship
between treatment choice and ratings of improvement, the
statistic will lose generalizability as the proportion of the
population of depressives who have received treatment
changes. In addition, to the extent that base rates fluctuate
from sample to sample for nonsubstantive reasons when
conducting a meta-analysis, one would expect greater con-
founding variability across studies in » (which responds to
these nonsubstantive fluctuations), when compared with d
(which does not).

As a result, d can provide a better estimate of the “trans-
portability” of an effect to an alternative context where the
base rates differ. For instance, parental susceptibility to
stress may have a very small association, as measured by 7,
with the incidence of child physical abuse when studied in
the general population where the incidence of abuse is quite
low. These findings would suggest that interventions de-
signed to bolster coping and stress resistance in parents may
have little practical value for actually reducing abuse. How-
ever, if the same finding is accompanied by a relatively
large d value, it would suggest that parental susceptibility to
stress is nonetheless relatively important in the limited
number of cases in which abuse actually occurs. As such,
the d value accurately reveals that the stress—abuse relation-
ship will become more apparent in settings in which the
base rate for abuse is higher, suggesting, for example, that
parental susceptibility to stress should be a more meaningful
target of intervention for families in many clinical or foren-
sic settings. As noted previously, the lack of sensitivity to
base-rate change has by itself led some writers to prefer
base-rate-insensitive statistics.

Choosing What to Report and How to Interpret
the Effects

So both statistics have some desirable characteristics.
How then is one to proceed? Some of the discussion sug-
gests r is particularly suited for cases in which the task is to
evaluate criterion-related validity. d is more appropriate
when the goal is to determine the effect of an intervention or
experimental manipulation. Furthermore, still other statis-
tics may be more appropriate when the issue has to do with
risk factors for negative outcomes. At times the distinction
between these contexts may not be straightforward though.
For example, though most of the studies that have evaluated
the effectiveness of the MMPI as an indicator of faking

good or faking bad have used experimental designs, these
are analog studies of a prediction problem, and so r would
typically be the more appropriate effect-size indicator as-
suming an ecologically valid estimate of the base rate is
available. Similarly, even in experimental social research, in
which d is the more commonly used effect size, the ultimate
goal can be the prediction of real-world outcomes (e.g.,
Anderson et al., 1999; Funder & Ozer, 1983), a goal for
which r is again defensibly the better measure. The preced-
ing discussion leads us to the following recommendations,
which apply both to individual studies and to meta-analytic
summaries.

First, in studies examining causal effects relating a di-
chotomous variable to a quantitative one, the d statistic
provides meaningful information. However, if any value is
to be gained from evaluating the causal variable as a pre-
dictor of the outcome in the real world, and the base rates
for the two values of the causal variable are unequal in real
life, then the point-biserial correlation can provide distinctly
meaningful information as well and so should be computed
and reported by using appropriate target base rates.

Second, it is not unusual for studies to equalize the base
rates for the dichotomous variable, even when they are very
different in the real world, a strategy that distorts the infor-
mation provided by r,,,. This problem is easily addressed if
there is a reasonable estimate available of the true base rate
in the population simply through the use of the population
instead of the sample base rate to generate r,,,. For instance,
if a sample base rate is .50 but a reasonable estimate of the
population base rate is .10, one could easily compute a more
accurate estimate of the population correlation coefficient
with Equation 5, 7, or 8 by using .10 as p,.

Third, base rate considerations raise several issues con-
cerning appropriate benchmarking for interpreting effect
sizes. As noted above, the commonly cited benchmarks for
r were intended for use with the biserial correlation (Cohen,
1988) and are too conservative for the correlation coeffi-
cient in general. A more reasonable strategy would treat .10
as a small effect, .24 as a moderate effect, and .37 as a large
one.

As the base rates for the dichotomous variable become
more unequal, the point-biserial correlation and standard-
ized mean respond very differently, and the issues surround-
ing interpretive benchmarking become more complicated.
The correlation coefficient becomes smaller, whereas d is
unaffected. An effect that the standardized mean difference
suggests is substantial can in fact prove to have a trivial

8 Though we focus on cases of one dichotomous variable,  also
has the unfortunate tendency in studies of two dichotomous vari-
ables (when r is typically called the ¢ coefficient) of changing
depending on whether the frequencies for one variable are artifi-
cially equalized and which variable is selected for equalization
(Dawes, 1993; Fleiss, 1981).
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impact in real-world situations. A predictor that the corre-
lation coefficient suggests is fairly weak can in fact prove to
be quite powerful when considered in light of the inherent
difficulty of predicting a rare phenomenon.

Several different approaches to the interpretation of the
effect size can be suggested that take these multiple per-
spectives into account. For example, Rosenthal and Rubin
(1982) recommended the binomial effect-size display as a
general indicator of the true size of an effect regardless of
the distributions of any dichotomous variables involved.
However, this argument has been strongly criticized (e.g.,
Hsu, 2004).

Instead of relying on newer statistics, two options are
available that use the familiar d and r,, statistics. One
option would involve the use of the standard fixed interpre-
tive benchmarks for small, medium, and large effects sug-
gested by Cohen (1988) as well as complementary interpre-
tive benchmarks that are adjusted in consideration of base
rates. Specifically, adjusted interpretive benchmarks for r,,;,
can be obtained by inserting base-rate information and the
standard d interpretive benchmark values into the following
formula:

r Base-Rate-Adjusted Interpretive Benchmark

dS tandard Interpretive Benchmark

= 1 (1)
&2 +—
Standard Interpretive Benchmark
PiP2

Table 5 provides adjustments of the benchmarks for several
base rates.” So the last three entries in the row labeled Large
indicate the r values that correspond to d = .80 when the
base rate increasingly departs from .50 as indicated. To
provide an example of the use of the adjusted benchmarks,
Table 3 provides information concerning the prediction of
suicide by using a Hopelessness scale. The point-biserial
correlation was only .077, which is a small effect according
to standard benchmarks. However, because the proportion
of study participants who actually committed suicide was

Table 5
A Sample of Interpretive Benchmarks for r,,, Adjusted
for Base Rates

Standard Adjusted benchmarks when

Interpretive values P =
standard d r .50 75 .95 .99
Large 0.80 .37 37 33 17 .08
Medium 0.50 24 24 21 11 .05
Small 0.20 .10 .10 .09 .04 .02

Note. Adjusted benchmarks for r,, are derived from the equation

_ Standard Interpretive Benchmark
F'Base-Rate-Adjusted Interpretive Benchmark 1 and

> : +—
Standard Interpretive Benchmark

1P2
suggest, for example, that if the base rate is .99, even a correlation of .08
indicates a relatively substantial predictive relationship.

only .013, the standardized mean difference was 0.727,
which is a large effect according to standard benchmarks.
Similarly, by using Equation 11, the adjusted interpretive
benchmarks for small, medium, and large correlations when
one of the base rates equals .013 become .023, .057, and
.090, respectively. When considered in light of standard
benchmarks for desirable levels of predictive accuracy, the
scale is not very effective at predicting suicide. This is
because the majority of individuals with high scores on the
hopelessness scale do not commit suicide. However, within
the limits of predictability created by the extremely dispar-
ate real-world base rates, this is nonetheless also a fairly
effective predictor. Relative to other measures attempting to
predict phenomena of such infrequency, the adjusted inter-
pretive benchmarks suggest that this Hopelessness scale is
likely to prove relatively useful despite an observed r of
.077.

Both of these interpretive statements reveal something
important about the characterization of this effect; they
provide complementary perspectives for understanding the
relationship between predictor and criterion. The bench-
marks are used to characterize the effect represented by the
correlation coefficient not the correlation coefficient itself.
Clearly, in an absolute sense, a correlation of .077 is small.
Even so, this predictor is likely to be of relative value
(assuming the criterion is important to predict) given the
limits of predictability in this particular context.

Following a similar approach, if base rates are actually
deemed important, adjusted interpretive benchmarks for d
that consider the base rate can be computed by inserting
base-rate information and the standard r,, interpretive
benchmark values into the following formula:

dBme-Rate-Adjusred Interpretive Benchmark
¥ Standard Interpretive Benchmark

= . (12)

1 _ .2
AY ( 1 T Standard Interpretive Benchmark) PiP2

Table 6 provides a sample of the adjusted benchmarks for
several base rates. For the Large row, the last three entries

“ Given the links we have already demonstrated between r and
t, a parallel that may be helpful to some readers—though we are
not suggesting this as an inferential strategy—would be to modify
the alpha benchmark required for the statistical significance of 7,
such that at more extreme base rates, findings would be considered
significant at a higher alpha level (e.g., p = .25 rather than p =
.05). This kind of alpha modification parallels what is done by
Equation 11 and in Table 5. Conversely, given the links we have
demonstrated between d and ¢, it may help to note that what is done
by Equation 12 and illustrated in Table 6 is analogous to imposing
onto d the standard alpha level requirement of p = .05 for the
significance of 7. That is, for a fixed total N to achieve a statistically
significant ¢ value, an increasingly large mean difference is re-
quired as p, becomes smaller, and this is the impact that Equation
12 has on d.



398 McGRATH AND MEYER

Table 6
A Sample of Interpretive Benchmarks for d Adjusted
for Base Rates

Standard Adjusted benchmarks when
Interpretive values P =
standard d r .50 75 .95 .99
Large 0.80 37 0.80 0.92 1.84 4.02
Medium 0.50 .24 0.50 0.58 1.15 251
Small 0.20 .10 0.20 0.23 0.46 1.01

Note. Adjusted benchmarks for d are derived from the equation

I'Standard Interpretive Benchmark

dBaw—Rule—Ad/’uxmd Interpretive Benchmark r2
V(l = TStandard Interpretive Beurhmark)plp2
and suggest, for example, that if the base rate is .99, a standardized mean

difference of 2.51 is necessary before a predictive relationship can be
considered medium sized.

indicate the d values that correspond to » = .37 when the
base rate increasingly departs from .50 as indicated. For
instance, the table shows that if the benchmarks for d are
adjusted in light of base rates, for a treatment to produce
what is considered a large standardized mean difference
when only 1% of the target population members receive the
treatment and the researcher deems that base-rate informa-
tion is important to the interpretation of the effect, the
magnitude of d would need to be about 4.0 rather than 0.80.

A final option is to report d as well as r. Doing so has
several benefits, including simplicity and the fact that it does
not require adjusting interpretive benchmarks. An addi-
tional benefit is that when base rates diverge, reporting both
r and d will juxtapose the seemingly discrepant inferences
about magnitude of effect and will highlight the importance
of deciding whether the natural base rates should be given
credence or be discounted. However, for efficiency, re-
searchers may prefer adjusting the base rates in instances in
which large numbers of effect-size statistics are reported for
a single sample.

Implications for Meta-Analyses

Meta-analytic researchers have the choice of summa-
rizing research findings with either r or d whenever the
research question involves one dichotomous and one
quantitative variable. They also face a similar choice
when summarizing findings from the 2 X 2 data matrices
formed by two dichotomous variables. In these instances,
researchers need to choose whether to use a base-rate-
sensitive statistic such as phi (i.e., r), number needed to
treat, PPP, or the absolute risk reduction over a base-rate-
insensitive statistic such as d, the odds ratio, sensitivity,
or the relative risk reduction. Rather than relying on what
is traditional practice in an area of research, the choice
should be made deliberately after carefully considering
the issues outlined above. The critical question is one of
accurate generalization: Is base-rate sensitivity important

for accurately modeling the impact of a predictor, risk
factor, intervention, or treatment in the real-life setting
where the finding will be applied? If it is, the meta-
analyst faces the additional burden of considering the
base rate as part of the effect-size estimation. For in-
stance, if one wishes to predict relatively rare real-world
outcomes (e.g., malingering, recidivism, diagnosis, em-
ployee theft, success in a highly selective training pro-
gram), each study effect size should be computed by
using a reasonable estimate of real-life base rates. Be-
cause primary studies vary in the extent to which the
sample base rate matches the intended population base
rate, it is incumbent on the meta-analyst to select a target
base rate and compute effect sizes accordingly (e.g.,
computing r,, from Equations 5, 7, or 8 by using the
targeted base rate rather than the sample base rate).

At the same time, however, as noted in passing several
times above, the realistic base rate itself may be a moving
target. For instance, a predictor can be used both in a
general screening setting (as a risk factor for a disorder
among people in the general population) and also in one
or more alternative settings in which the condition to be
predicted has a higher relative base rate (e.g., patients
being screened in a primary care setting; patients being
admitted to a tertiary-care hospital specializing in the
disorder). Under these circumstances, it would be optimal
if the meta-analyst were able to estimate the base rate for
each common setting and to provide relevant effect size
estimates for each.

Conclusions

Effect sizes have in recent years come into wider use, as
meta-analysis has become the integrative strategy of choice
among behavioral researchers. Important decisions about
clinical and theoretical questions are being made regularly
on the basis of these statistics. To date, these investigations
have proceeded with little consideration of the impact the
statistic of choice has on the outcomes.

Although we welcome the emerging model of inferential
judgment based on effect sizes as well as significance tests,
we caution the consumers of effect-size statistics that their
use is not always as straightforward as it may seem from
text descriptions or from traditional practice in any area of
research. Depending on whether the goal of an analysis is to
estimate the relative size of the impact of one variable on
another, the effectiveness of one variable as a real-world
predictor of another, or the importance of one variable as a
risk factor for another, we would argue that the optimal
approach to understanding the effect can vary. There will
even be circumstances when it is interesting and important
to consider a relationship from more than one of these
perspectives.

We have suggested these multiple perspectives on the
interpretation of an effect can be achieved through the use
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of both r and d or through simultaneous comparison of one
statistic to both standard and adjusted interpretive bench-
marks. With regard to the latter possibility, we are reminded
of the concerns Cohen (1988) raised with the introduction of
his benchmarks.

The terms “small,” “medium,” and “large” are relative not only
to each other but to the area of behavioral science or even more
particularly to the specific content and research method being
employed ... [T]here is a certain risk inherent in offering
conventional operational definitions for these terms for use . . .
in as diverse a field of inquiry as behavioral science. (p. 25)

Although some progress has been made in suggesting
benchmarks that are appropriate to specific areas of behav-
ioral investigation (e.g., Hemphill, 2003; Richard et al.,
2003), the preceding discussion suggests that base rates also
can be used to adjust benchmarks to the situation. At the
same time, it is not our intention to suggest that all effects
based on disparate base rates should be interpreted from
multiple perspectives. The researcher should evaluate
whether it is important to understand an effect indepen-
dently of the base rates that hold in a particular setting,
whether it is important to consider the impact of base rates
on the potential for prediction, or both. Effect sizes cannot
be understood in a vacuum, and researchers have an obli-
gation to consider the context or contexts in which an effect
is to be understood.
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Appendix

Relationship Between Total and Pooled Standard Deviations

The following proof is applicable to both population and
uncorrected sample variances but is presented in relation to
the latter. The total variance of a set of scores can be
partitioned into independent components as follows (e.g.,
see Cohen, 1988, p. 281, Equation 8.2.17):

2
S%’ = Sﬁooled + S?

In the case of two groups, this equation can be manipulated
as follows:

S?’ = szmnled + Sgy = szmoled + E(?Z/) - E(?})2
= S;Zmoled + pl??l + Pz??z - (pl?-l + le?z)z
= S;aaled + P117-2| + szzz - Pﬁ?zl - 2p 1172?1?2 - 17%1722

= S,zwazed +(p — P%)?% - 2P1P2?1?2 + (p2— P%)?Zz

= Slzmoled‘*'Pl(l _pl)Y?l = 2ppoY Y, + po(1 _Pz)Y-Zz

= S;Zwaled + Plpz(?l - ?-2)2-

The derivation of Equation 7 (the formula for the r,, based
on the pooled variance) from the more familiar Equation 5
(the formula for the r,, based on the total variance of the
quantitative variable) then proceeds as follows:
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