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STATISTICAL DEVELOPMENTS AND APPLICATIONS

Inferential Errors in Taxometric Analyses of Ordered
Three-Class Constructs

ROBERT E. MCGRATH

School of Psychology, Fairleigh Dickinson University

Taxometric analysis (Waller & Meehl, 1998) has become a popular tool for investigating whether personality and psychopathology constructs are
better modeled as dimensional or categorical. Monte Carlo evidence for the validity of taxometric methods, however, has been restricted to data that
are derived either from latent dimensional or dichotomous models. There are various circumstances in which the correct model for a psychosocial
construct could involve three or more ordered classes. It was demonstrated both mathematically and empirically that under these circumstances, the
results of taxometric analyses can lead to incorrect conclusions about the population structure. Recommendations are provided for future studies
intended to distinguish between categorical and dimensional structures.

Taxometric analysis refers to a set of statistical techniques intro-
duced by Meehl and his associates (Meehl & Yonce, 1994, 1996;
Waller & Meehl, 1998) that has become a popular tool for ad-
dressing whether constructs in psychopathology and personality
are inherently dichotomous or dimensional. Although there are
other statistical methods that are intended to evaluate data struc-
ture, such as cluster analysis and finite mixture models, Meehl’s
discussions of taxometrics has spurred much of the recent in-
terest in evaluating whether diagnostic and personality labels
are in fact taxonic (e.g., Schmidt, Kotov, & Joiner, 2004). As a
result, taxometric methods have become a particularly popular
statistical approach for addressing such questions (see Haslam,
2003; Haslam & Kim, 2002; Ruscio, Haslam, & Ruscio, 2006;
Schmidt et al., 2004). Since 1992, more than 100 articles have
been published using taxometric analysis to evaluate whether
latent structure is based on classes or factors, including several
published in the Journal of Personality Assessment (Franklin,
Strong, & Greene, 2002; Strong, Greene, Hoppe, Johnston, &
Olesen, 1999; Strong, Greene, & Kordinak, 2002).

The statistical conclusion validity of taxometric analysis was
established initially through a series of Monte Carlo studies
(Meehl & Yonce, 1994, 1996). Taxometric methods were devel-
oped specifically to distinguish between latent dichotomous and
dimensional structures, however, and simulation studies have fo-
cused exclusively on these two alternatives. In contrast, other
statistical methods having to do with data structure, such as clus-
ter analysis and finite mixture models, allow for the possibility
that constructs can consist of more than two classes (polytomous
structure). To date, no studies have been conducted evaluating
the behavior of taxometric methods when a construct encom-
passes three or more classes.
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Both Meehl (1999) and Ruscio and Ruscio (2002) discussed
this issue, and concluded taxometric methods should, at least
theoretically, be useful still. Both discussions assumed manifest
indicators would be sensitive only to the discrimination between
two of the classes, however, so that some indicators would dis-
tinguish only between classes A and B, while others would be
sensitive to classes B versus C. If the classes demonstrate an
ordinal structure in which the rank ordering of classes is consis-
tent across indicators, however, it would seem more likely that
valid indicators of a polytomous construct will be sensitive to
multiple discriminations between adjacent classes.

For example, some measures of psychopathology and many
measures of personality are constructed as bipolar scales.
A higher than average score on a measure of introversion–
extroversion may suggest an extroverted individual, while a
lower than average score indicates introversion. If at the la-
tent level both extroversion and introversion are categorically
distinct from the normative level of social involvement, a well-
constructed measure of the full bipolar spectrum should be sen-
sitive to both discriminations.

Even in circumstances where the scale is unipolar, polyto-
mous structure may be present if one or more classes in turn
subsumes multiple classes. For example, although available re-
search indicates the existence of a schizotypal taxon in the gen-
eral population (e.g., Blanchard, Gangestad, Brown, & Horan,
2000; Erlenmeyer-Kimling, Golden, & Cornblatt, 1989), it is
mute on whether individuals with schizophrenia represent an
additional taxon within the schizotypal class. Going one step
further, Blanchard, Horan, and Collins (2005) recently have
found that a taxonic distinction exists among those meeting cri-
teria for schizophrenia depending on the degree to which the
disorder is characterized by negative symptoms. If a sample
were gathered that included a reasonable sampling of normal,
schizotypal, and schizophrenic individuals, and the indicators
used are primarily sensitive to the severity of negative symp-
toms, it is possible that the results would reflect the presence of
three and perhaps even four ordered classes.
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It is impossible to know how often the two conditions of
(1) polytomous structure and (2) manifest indicators sensitive
to the presence of more than two classes are met in practice.
Given that there is reason to believe it probably does occur at
times, it is worth considering how taxometric methods would
behave under these circumstances. Unfortunately, a review of
the published literature provides no indication that researchers
have considered and ruled out the possibility of polytomous
structure before electing to use taxometric methods. In the ab-
sence of such safeguards, one would hope the results from the
taxometric analysis of polytomous data would produce results
that are inconsistent with either a dimensional or dichotomous
interpretation, but this is an empirical question.

The current study was conducted to investigate what is likely
to happen when popular taxometric methods inadvertently are
used in conjunction with polytomous ordinal data where the
indicators are sensitive to multiple qualitative distinctions. This
issue will be addressed both mathematically and empirically.
To simplify matters, the analysis will be restricted to the three-
class case, although the results provide insight into what would
happen with more complex structures involving four or more
classes.

The reference to inadvertent use is important for understand-
ing the goals and methods of this study. The intention is not to
develop or validate taxometric methods as a general approach
to the detection of three or more ordered classes, although
the potential for doing so will be discussed briefly later. The
goal instead is to demonstrate for current users of taxometric
methods the importance of considering the possibility of other
latent structures besides dimensions and dichotomies before
using taxometric methods. As the results will demonstrate,
the failure to consider other possibilities potentially results in
inferential errors.

METHOD

File Generation

A series of simulated data sets was generated for purposes
of demonstrating the impact of ordered three-class structure on
the outcomes of taxometric analyses. These data sets were de-
veloped using a generalization of a method described by Meehl
and Yonce (1994) for the creation of two-class data sets. Al-
though Meehl and Yonce also provided a method to generate
dimensional data sets, numerous studies already have found
that taxometric methods accurately can identify dimensional
structure (e.g., Meehl & Yonce, 1994, 1996; Waller & Meehl,
1998), so there was no need to study dimensional data further.
More sophisticated approaches have since been developed for
generating simulated categorical data (e.g., Waller, Underhill, &
Kaiser, 1999). The Meehl and Yonce (1994) algorithm is unique
however, in terms of the number of studies demonstrating that
taxometric methods accurately can detect taxonic structure in
the resulting data sets.

The Meehl and Yonce (1994) algorithm requires setting four
parameters for categorical data sets, the sample size; the base
rate for each class, the mean separation between classes, and
the degree of nuisance covariation within classes. The mean
separation refers to the difference between means in adjoining
classes. Larger separations between classes will produce greater
covariation between indicators and also should make it easier for
taxometric and other methods to detect the categorical structure.

Nuisance covariation refers to the degree of covariation within
classes. Greater nuisance covariation also increases the degree
of covariation between indicators, but it serves as noise that
should interfere with the detection of categorical structure. In
the Meehl and Yonce (1994) algorithm, nuisance covariation is
introduced by the use of latent factor loadings.

Given the goals of the study, parameters were chosen because
they were within a range that should allow the detection of cat-
egorical structure. To minimize the possible effect of sampling
error on the findings, a single data set of 100,000 observations
was generated for each combination of parameters to be ex-
amined. The other three parameters were set within a range
that prior simulation studies on identifying categorical structure
indicated would allow the detection of dichotomous structure
(Beach, Amir, & Bau, 2005; Cleland, Rothschild, & Haslam,
2000; Meehl & Yonce, 1994; Steinley, 2004). Based on this re-
view, the lower boundary for base rates was set to .10. Various
base rates drawn from previous studies were used to develop
rectangular, roughly bell-shaped, and skewed distributions re-
flecting three classes.

Similarly, prior discussions suggest separations between class
means of 1.25 standard deviations represent the lower bound
likely to be detectable by taxometric methods, although separa-
tions of 2.0 are better (e.g., Ruscio & Ruscio, 2004b). Finally,
a factor loading of .001 was used by Meehl and Yonce (1994)
to represent the case of no nuisance covariation, but loadings as
high as .70 still produced detectable taxonic structures.

Crossing five base-rate distributions with the two nuisance
covariation values (.001 and .70) and the four possible combi-
nations of the two mean separations (1.25 and 2.0) produced the
40 scenarios summarized in Table 1. For each scenario, four in-
dicators were generated. To simplify matters, all four indicators
were developed using the same parameters.

To create the data sets, five random normal deviates (M =
0, SD = 1.0) were generated for each observation using SPSS
version 12.0. A Visual BASIC program was developed that
used the five deviates to create one observation’s scores on four
indicators, according to the following steps.

The first random deviate was multiplied by the factor loading
in Table 1. This served as the seed value for all four indicators.
The seed value was then added separately to the remaining four
deviates weighted by

√
1 − loading2

to generate four different scores. This step created four
correlated indicators without categorical structure. Finally, the
first mean separation in Table 1 was added to the four indi-
cators for a proportion of observations equal to the second
base rate, and the two separation values were both added to
a proportion of observations equal to the third base rate. As a re-
sult, each indicator included observations representing three dis-
tinct classes that were rank-ordered consistently across the four
indicators.

For example, data set B4S1L1 (see Table 1) consisted of
100,000 observations in which 60,000 had a mean score of
0 on each of the four indicators, 20,000 observations had a
mean score of 2, and 20,000 had a mean score of 2 + 2 = 4.
Within-class covariation was minimal in this data set, since the
factor loadings were only .001, so covariation among the four
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TABLE 1.—Data set patterns.

Data Set Label BR Sep Load E(M) E(Var) E(r) Observed Skew (M)

B1S1L1 .33-.34-.33 2.00-2.00 0.001 2.00 3.64 0.73 0.00
B1S1L2 .33-.34-.33 2.00-2.00 0.700 2.00 3.64 0.86 0.00
B1S2L1 .33-.34-.33 1.25-2.00 0.001 1.50 2.77 0.64 0.15
B1S2L2 .33-.34-.33 1.25-2.00 0.700 1.50 2.77 0.82 0.15
B1S3L1 .33-.34-.33 2.00-1.25 0.001 1.75 2.77 0.64 −0.15
B1S3L2 .33-.34-.33 2.00-1.25 0.700 1.75 2.77 0.82 −0.14
B1S4L1 .33-.34-.33 1.25-1.25 0.001 1.25 2.03 0.51 0.00
B1S4L2 .33-.34-.33 1.25-1.25 0.700 1.25 2.03 0.75 0.01
B2S1L1 .20-.60-.20 2.00-2.00 0.001 2.00 2.60 0.62 −0.01
B2S1L2 .20-.60-.20 2.00-2.00 0.700 2.00 2.60 0.80 0.00
B2S2L1 .20-.60-.20 1.25-2.00 0.001 1.40 2.09 0.52 0.24
B2S2L2 .20-.60-.20 1.25-2.00 0.700 1.40 2.09 0.76 0.23
B2S3L1 .20-.60-.20 2.00-1.25 0.001 1.85 2.09 0.52 −0.23
B2S3L2 .20-.60-.20 2.00-1.25 0.700 1.85 2.09 0.76 −0.24
B2S4L1 .20-.60-.20 1.25-1.25 0.001 1.25 1.63 0.38 0.00
B2S4L2 .20-.60-.20 1.25-1.25 0.700 1.25 1.63 0.69 −0.01
B3S1L1 .10-.80-.10 2.00-2.00 0.001 2.00 1.80 0.44 −0.01
B3S1L2 .10-.80-.10 2.00-2.00 0.700 2.00 1.80 0.72 0.00
B3S2L1 .10-.80-.10 1.25-2.00 0.001 1.33 1.55 0.36 0.25
B3S2L2 .10-.80-.10 1.25-2.00 0.700 1.33 1.55 0.67 0.25
B3S3L1 .10-.80-.10 2.00-1.25 0.001 1.93 1.55 0.36 −0.25
B3S3L2 .10-.80-.10 2.00-1.25 0.700 1.93 1.55 0.67 −0.25
B3S4L1 .10-.80-.10 1.25-1.25 0.001 1.25 1.31 0.24 0.00
B3S4L2 .10-.80-.10 1.25-1.25 0.700 1.25 1.31 0.61 0.00
B4S1L1 .60-.20-.20 2.00-2.00 0.001 1.20 3.56 0.72 0.52
B4S1L2 .60-.20-.20 2.00-2.00 0.700 1.20 3.56 0.86 0.51
B4S2L1 .60-.20-.20 1.25-2.00 0.001 0.90 2.62 0.62 0.51
B4S2L2 .60-.20-.20 1.25-2.00 0.700 0.90 2.62 0.80 0.51
B4S3L1 .60-.20-.20 2.00-1.25 0.001 1.05 2.81 0.64 0.34
B4S3L2 .60-.20-.20 2.00-1.25 0.700 1.05 2.81 0.82 0.35
B4S4L1 .60-.20-.20 1.25-1.25 0.001 0.75 2.00 0.50 0.30
B4S4L2 .60-.20-.20 1.25-1.25 0.700 0.75 2.00 0.75 0.30
B5S1L1 .80-.10-.10 2.00-2.00 0.001 0.60 2.64 0.62 0.94
B5S1L2 .80-.10-.10 2.00-2.00 0.700 0.60 2.64 0.81 0.94
B5S2L1 .80-.10-.10 1.25-2.00 0.001 0.45 2.01 0.50 0.76
B5S2L2 .80-.10-.10 1.25-2.00 0.700 0.45 2.01 0.75 0.76
B5S3L1 .80-.10-.10 2.00-1.25 0.001 0.53 2.18 0.54 0.69
B5S3L2 .80-.10-.10 2.00-1.25 0.700 0.53 2.18 0.77 0.69
B5S4L1 .80-.10-.10 1.25-1.25 0.001 0.38 1.64 0.39 0.47
B5S4L2 .80-.10-.10 1.25-1.25 0.700 0.38 1.64 0.69 0.47

Note. Parameters were fixed across indicators in each data set. BR = base-rate pattern for the classes with the lowest, intermediate, and highest means, respectively; Sep = separation
between the classes with the lowest and intermediate means, and intermediate and highest means, respectively; Load = factor loading used to create nuisance (within-class) correlation;
E(M) = expected mean for each indicator; E(Var) = expected variance for each indicator; E(r) = expected correlation between each pair of indicators. The last column is the mean
skew for the four indicators in the data set.

indicators was due almost exclusively to parallel differences in
the means for the three classes.

Table 1 also provides the expected means, variances, and
correlations for each data set. The latter two quantities were
computed using a formula provided by Haertel (1990, Equation
12):

cov(yz)=
k∑
i

pi cov(yz)i+
k∑
j <

k∑
i

pipj(ȳi−ȳj )(z̄i−z̄j ). (1)

Readers familiar with taxometric methods will recognize this
as a generalization of the formula Meehl and Yonce (1996)
called the General Covariance Mixture Theorem, which is the
fundamental formula underlying several taxometric methods.
A derivation of Haertel’s formula seems to be unavailable in
the published literature. Since Equation 1 determines the effect
of polytomous data on the outcomes from certain taxometric
methods, a derivation is provided in Appendix A.

None of the actual data set means, variances, or correlations
differed from the expectations provided in Table 1 by as much
as .03, which is consistent with the accuracy of the algorithm
used and the proposition that sampling error was minimized
through large sample sizes. Mean skew of the indicators also
was computed for each data set. These values varied between
.26 and .95, and varied as a function of the base-rate distribution
and the mean separations.

Taxometric Analyses

Each data set was examined using the four most popular taxo-
metric methods. Mean Above Minus Below a Cut (MAMBAC;
Meehl & Yonce, 1994) requires two indicators of the construct.
Cut scores are set at successive points on one indicator (the input
indicator). At each cut score, the mean score for a second indi-
cator (the output indicator) is computed separately for those
above and below the cut, and the difference between two
means is computed. For dichotomous constructs without serious
skew, a graph with input cut scores on the abscissa (i.e., Y- or
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vertical-axis) and output mean differences on the ordinate (i.e.,
X- or horizontal-axis) should be hill-shaped, with the peak oc-
curring where the sum of the hit rates for the two classes is at a
maximum. When the latent construct is dimensional, the same
graph should tend toward a U shape. Each pair of dimensional
indicators can be evaluated twice, with one indicator used as the
input indicator for one analysis and the output indicator for the
other. With m = 4 indicators it is therefore possible to generate

m!

(m − 2)!
= 4!

2
= 12

MAMBAC graphs.
Maximum Covariance (MAXCOV; Meehl & Yonce, 1996)

requires one input and two output indicators. Observations are
ordered and divided into overlapping subgroups or windows
along the input indicator, and the covariance between the output
indicators is computed within each window. For dichotomous
constructs, the General Covariance Mixture Theorem suggests
a graph with input windows on the abscissa and output covari-
ances on the ordinate should resemble a hill that peaks in the
window where the frequencies of the taxon and complement
classes are approximately equal. If the construct is dimensional,
the graph should be relatively flat or saw-toothed. Using four
indicators it is possible to produce

m!

2!(m − 3)!
= 4!

2(1)
= 12

MAXCOV graphs.
Maximum Eigenvalue (MAXEIG; Waller & Meehl, 1998) is

an extension of MAXCOV for circumstances where more than
two indicators are available to serve as output. After dividing
observations into overlapping windows on the input indicator,
the eigenvalue for the first principal component based on the
output indicators is computed within each window. The plot of
eigenvalues as a function of window should follow the pattern
described for MAXCOV. MAXEIG usually is conducted one
time, with each indicator as the input indicator, resulting in m =
4 graphs for each data set.

MAXCOV and MAXEIG also allow estimation of the
Bayesian posterior probability of membership in the taxon class
for each observation in the data set, assuming a taxon is present.
The histogram of these probabilities provides another test of
the taxonic hypothesis. A histogram in which the probabilities
divide into two sets that cluster near 0 and 1 is considered sup-
portive of the presence of two classes, though Ruscio and Ruscio
(2004b) have argued that this pattern can occur even if the data
are dimensional. If instead the histogram reveals a single cluster
of probabilities, or if probabilities are distributed across the en-
tire range from 0 to 1, the results are considered more consistent
with a dimensional structure.

Latent Mode (L-Mode; Waller & Meehl, 1998) differs from
the preceding methods in that all available indicators are treated
as a single set. The indicators are factor analyzed, and the factor
scores are generated for the first factor. Because of the reduction
of measurement error, the density plot of the first factor scores
should be bimodal if the data are taxonic and unimodal if the data
are dimensional. One L-Mode factor analysis was conducted for
each data set using the four indicators.

Taxometric methods also produce statistical results that are
relevant to distinguishing between taxonic and dimensional data.
An estimate of what the taxon base rate would be if the data are
structurally dichotomous can be generated in association with
each MAMBAC, MAXCOV, or MAXEIG graph. The density
plot generated by the L-Mode procedure also can be used to pro-
duce three distinct estimates of the taxon base rate, two based on
the distribution modes and one based on the attempted classifi-
cation of observations as belonging to the taxon or complement
class. If in fact a taxon is present in the data, all these estimates
of taxon base rate should tend to converge on a single value.
If, instead, the data are dimensional, there is no reason to ex-
pect convergence. Excessive variability in the taxon estimates is
therefore indicative of dimensional structure, although no real
standard has been suggested for what should be considered ex-
cessive.

Finally, Waller and Meehl (1998) also discussed the good-
ness of fit index (GFI) as a statistical indicator of structure. In
the case of taxometric analysis, the GFI evaluates the degree of
consistency between the observed variance–covariance matrix
and the best estimate of that matrix assuming the data are in fact
taxonic. They concluded that a GFI value ≥ .90 can be indica-
tive of taxonic structure. Several studies have questioned this
statistic’s accuracy as an indicator of taxonic structure, however
(Cleland et al., 2000; Ruscio & Ruscio, 2004b).

The proposition that data are structurally dichotomous is a
hypothesis similar in form to those traditionally tested via null
hypothesis significance tests (NHSTs). Taxometric methods are
distinct from NHSTs, however, in that the conclusion one draws
about the hypothesis is based not on a single test against a cri-
terion for significance, but rather on whether there is a conver-
gence about whether the hypothesis adequately accounts for the
results across a series of discrete analyses. Meehl referred to this
convergence criterion as coherent cut kinetics in the context of
taxometrics (Meehl & Yonce, 1994), and as consistency hurdles
in the context of a general alternative to NHSTs for hypothe-
sis testing (Meehl, 1978). In taxometric analysis, the researcher
is expected to examine the full array of findings—including
graphical results, homogeneity of the taxon base rate estimates,
and GFI values—to draw a conclusion about the hypothesis of
taxonic structure based on consistency in the findings. Many
researchers, however, interpret only the graphical results. In the
present study, the graphical results will be examined first; then
graphical and statistical results will be examined in combina-
tion. The use of coherent cut kinetics allowed for three possible
outcomes for any data set in the present study:

1. The results converged to suggest a dichotomous structure,
which would lead to an inaccurate interpretation in practice,
that is, that the data are dichotomous.

2. The results converged to suggest a dimensional structure,
which would lead to an incorrect interpretation, that is, that
the data are dimensional.

3. The results did not converge on either interpretation. The
manner in which such an outcome is likely to be treated in
current practice will be discussed below.

Taxometric analyses were carried out using a software pack-
age developed by John Ruscio (Ruscio, Haslam, & Ruscio,
2006). This package is based on the R statistical programming
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language, and was used in the present study in association with
R version 2.2.1. In addition to the typical output associated with
taxometric methods, the software allows computation of the GFI
for each taxometric method.

Alternative Analyses

As was noted earlier, taxometric methods are not the only
analytic procedures that have been developed for the purpose
of identifying categorical structure. Several other methods for
estimating the correct number of classes reflected in data also
were evaluated, with the purpose of comparing the outcomes
with those resulting from taxometric analysis.

Cluster analysis is a heuristic statistical technique for catego-
rizing observations, in that observations are clustered whether
or not the data are truly categorical (just as factor analysis will
produce factor scores regardless of whether the data are truly di-
mensional). A variety of procedures have been suggested, how-
ever, for evaluating the number of naturally occurring clusters
in data analyzed using cluster analysis. Three such procedures
found by Milligan and Cooper (1985) to be particularly effec-
tive in the presence of substantial error variability are available
through SAS (SAS Institute, 2004).

All three are based on the use of hierarchical cluster analysis,
which generates a series of models with the number of clusters
first set to the number of observations (each observation treated
as a cluster). In each subsequent step the two closest clusters
are combined, to reduce the number of clusters by one, until
the final step consists of a single cluster. The cubic clustering
criterion (CCC) statistic is computed at each step. A CCC > 2
is considered good evidence of the correct number of classes,
while a value between 0 and 2 potentially is supportive. An
elevated CCC value for the one-cluster solution would suggest
a purely dimensional structure.

The pseudo-F and pseudo-t2 statistics also are computed
at each step, and then they are inspected sequentially beginning
with the most complex model and moving toward the one-cluster
solution. A marked increase in the value of the pseudo-F statistic
is expected to correspond to the correct solution for the number
of classes in the data. A marked increase in the pseudo-t2 statistic
is expected to correspond with the solution involving one fewer
cluster than the correct solution.

There are several problems with this set of procedures. The
pseudo-F statistic cannot be computed for the one-cluster solu-
tion. The pseudo-t2 statistic can, but since this statistic indicates
the accuracy of the next largest solution, neither of these proce-
dures can test directly for the presence of dimensional structure.
None of the procedures are exclusive: several solutions can meet
the criterion for a potentially correct solution. Finally, the three
procedures often do not converge, leading Sarle and Kuo (1993)
to recommend interpreting them on the basis of consensus if
one exists.

More recently, Tonidandel and Overall (2004) developed a
fourth procedure that in their preliminary analyses fared better
than some methods for which Milligan and Cooper (1985) found
positive results. Their method uses resampling to generate 100
data sets from the original data. Each sample then is divided into
four independent subsamples, and hierarchical cluster analysis
is conducted using each subsample. The cluster mean profiles
from the four subsamples at each hierarchical level then are
combined in a single higher-order cluster analysis. If the higher-

order clusters that result from this analysis each contain one
mean profile from each subsample, then perfect replication has
occurred. If several solutions result in perfect replication, the
solution with the largest number of clusters is used as the best
estimate of the number of clusters. This process is repeated for
each of the resampled data sets, producing 100 estimates of the
number of classes. The final step involves inspecting the best
estimate of the number of clusters across the 100 replications.
The value that defines the 80th percentile of these estimates is
considered the best single estimate of the correct number of
classes.

One useful feature of this Tonidandel and Overall (2004) pro-
cedure is that preliminary recommendations have been offered
concerning the identification of purely dimensional structure. If
the modal estimate of the number of clusters emerges in less
than 65% of the resampled data sets, they concluded the results
support the presence of dimensional structure.

Cluster analyses were computed using SAS v.9.1. By default,
SAS prints CCC, pseudo-F , and pseudo-t2 statistics for solu-
tions consisting of 30 clusters or fewer. A set of SAS macros are
also available for generating the Tonidandel and Overall (2004)
procedure. In all cases, data were cluster analyzed using Ward’s
minimum variance method. Resampled data sets each consisted
of 10,000 observations.

Mixture models represent another alternative to taxomet-
rics for the identification of categorical structure. These analy-
ses were conducted using Fraley and Raftery’s (2002, 2003)
MCLUST package. Mixture models treat class membership
as missing data and provide maximum-likelihood estimates
of class membership using the expectation-minimization al-
gorithm. MCLUST is distinctive in several ways. First, mix-
ture models are sensitive to the choice of initial values for
the maximum-likelihood estimation. MCLUST uses hierarchi-
cal agglomerative clustering to generate reasonable estimates
for the initial values. Second, clustering procedures generally
are sensitive to the shape of the clusters, for example, whether
they are spherical or ellipsoidal. MCLUST examines models
that differ both in the number of clusters and in the distribu-
tional characteristics of those clusters. MCLUST computes the
Bayesian Information Criterion (BIC) as a goodness-of-fit statis-
tic for each model. The BIC penalizes more complex models,
so it treats parsimony as a characteristic of an optimal model.
The model associated with the largest BIC value is presented
as the best estimate of the number of classes underlying the
data.

The version of MCLUST written for R was used in the present
study. Because of computer limitations, a random subsample of
5,000 observations was drawn from each data set for the mixture-
model analyses. By default, MCLUST examines models with
the number of classes set from one to nine. The one-class model
represents the purely dimensional case.

RESULTS

Each data set served as the basis for 12 MAMBAC graphs, 12
MAXCOV graphs, 4 MAXEIG graphs, 1 histogram of MAX-
COV and 1 histogram of MAXEIG Bayesian posterior prob-
abilities, and 1 L-Mode graph. Figures 1–6 provide either the
single graph for each data set, or a sample graph from the set.
In all cases where a procedure generated multiple graphs, the
results were very similar. This was to be expected given the
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FIGURE 1.—Sample MAMBAC plot for each data set. Labels correspond to those in Table 1.

large sample size and the use of the same parameters for each
indicator in a data set. The complete set of graphs generated for
this study is available by request from the author.

MAXEIG, MAXCOV, and L-Mode graphs were smoothed
using Tukey’s 3RS3R smoother, while lowest smoothing was
used for MAMBAC. Dotted MAMBAC curves represent raw
results, while smoothed curves are solid. Given the large sample
size, the number of windows on the abscissa for MAXCOV and
MAXEIG was increased to 5,000, and only the smoothed curve
is presented to render the figures more legible.

For L-Mode graphs, taxometric software written using R finds
the mode within each of two nonoverlapping ranges of scores
within the distribution. These ranges usually are set from .001 to
the lower limit of the factor scores, and from .001 to the upper
limit (Waller & Meehl, 1998, Appendix D). In the bimodal
and dimensional cases this is a reasonable approach. In the
case where there is a third mode at zero, which should occur
in symmetrical trichotomous distributions, the values .001 and
.001 often were identified as the two modes, an outcome that
caused an error in the taxometric program. Revising the standard
L-Mode procedure so the medial boundaries for the lower and
upper ranges were set to .5 and .5, respectively, eliminated this
problem. Depending on the data set, this meant that the value
identified for the lower mode was either .5 or Mo3, while the
upper mode was .5, Mo1, or Mo2.

Table 2 provides descriptive statistics associated with test-
ing the hypothesis of taxonic structure for the 40 data sets. For
MAMBAC, MAXCOV, and MAXEIG, the first column in the
table provides the mean of the 4 (MAXEIG) or 12 (MAMBAC
and MAXCOV) estimates of the taxon base rate, followed by
the standard deviation of those estimates. For L-Mode, the first
column instead is the mean of the two taxon base rate estimates
derived from the modes of the curve, while the second column
is the single base rate estimate derived from observation clas-
sification. For each taxometric method, the final column is the
GFI.

The taxometric results will be discussed in two ways. Since
the graphical output generally is treated as the central evidence
concerning the structure of the data, the first section reviews the
effect of trichotomous data on graphical output, so it is organized
by the taxometric method. This section includes discussion of
the effect of trichotomous data on the mathematical formulas
that underlie the graphs. The second section addresses the issue
of how a researcher might interpret the results if taxometric
methods inadvertently are used with trichotomous data, and
is organized by data set. This analysis is presented based on
the graphical results alone, and on the integration of graphical
and statistical outputs. The final section is a brief summary of
outcomes from the four cluster-analytic procedures and from
the finite mixture models.



TAXOMETRICS AND THREE-CLASS CONSTRUCTS 17

TABLE 2.—Descriptive statistics for standard taxometric procedures.

MAMBAC MAXCOV MAXEIG L-Mode

Data set label BR M BR SD GFI BR M BR SD GFI BR M BR SD GFI BRM BRC GFI

B1S1L1 0.501 0.002 0.855 0.450 0.076 0.815 0.483 0.086 0.815 0.505 0.503 0.855
B1S1L2 0.500 0.001 0.419 0.498 0.082 0.382 0.491 0.084 0.371 0.511 0.507 0.419
B1S2L1 0.421 0.008 0.962 0.382 0.009 0.953 0.383 0.008 0.953 0.449 0.400 0.966
B1S2L2 0.454 0.001 0.606 0.382 0.020 0.572 0.391 0.013 0.569 0.336 0.382 0.610
B1S3L1 0.580 0.006 0.962 0.621 0.011 0.956 0.612 0.006 0.953 0.565 0.609 0.968
B1S3L2 0.544 0.001 0.603 0.591 0.018 0.583 0.589 0.005 0.584 0.658 0.614 0.607
B1S4L1 0.501 0.002 0.992 0.478 0.042 0.981 0.493 0.038 0.980 0.495 0.497 0.992
B1S4L2 0.497 0.001 0.746 0.515 0.050 0.715 0.525 0.047 0.716 0.503 0.501 0.746
B2S1L1 0.500 0.003 0.856 0.574 0.238 0.797 0.499 0.268 0.794 0.498 0.498 0.856
B2S1L2 0.500 0.001 0.509 0.400 0.186 0.362 0.395 0.204 0.377 0.501 0.499 0.509
B2S2L1 0.368 0.004 0.961 0.230 0.012 0.958 0.232 0.013 0.957 0.498 0.427 0.946
B2S2L2 0.425 0.001 0.673 0.276 0.014 0.538 0.281 0.012 0.517 0.496 0.458 0.656
B2S3L1 0.630 0.004 0.959 0.765 0.011 0.957 0.768 0.009 0.953 0.501 0.570 0.945
B2S3L2 0.575 0.002 0.670 0.714 0.025 0.564 0.708 0.031 0.568 0.497 0.537 0.651
B2S4L1 0.499 0.005 0.994 0.383 0.195 0.969 0.295 0.083 0.960 0.497 0.496 0.994
B2S4L2 0.503 0.002 0.808 0.474 0.168 0.705 0.532 0.135 0.757 0.504 0.504 0.808
B3S1L1 0.499 0.006 0.938 0.374 0.349 0.839 0.318 0.358 0.843 0.500 0.501 0.938
B3S1L2 0.500 0.001 0.686 0.651 0.279 0.227 0.511 0.348 0.352 0.502 0.502 0.686
B3S2L1 0.339 0.008 0.988 0.119 0.013 0.970 0.125 0.005 0.976 0.498 0.451 0.983
B3S2L2 0.430 0.001 0.794 0.194 0.010 0.677 0.198 0.008 0.665 0.498 0.472 0.786
B3S3L1 0.659 0.004 0.989 0.878 0.011 0.973 0.877 0.005 0.969 0.502 0.547 0.984
B3S3L2 0.566 0.001 0.791 0.796 0.020 0.630 0.795 0.008 0.647 0.500 0.525 0.784
B3S4L1 0.505 0.008 1.000 0.311 0.331 0.888 0.316 0.353 0.907 0.501 0.501 1.000
B3S4L2 0.502 0.002 0.887 0.618 0.262 0.617 0.465 0.297 0.739 0.502 0.502 0.887
B4S1L1 0.252 0.004 0.896 0.293 0.015 0.906 0.298 0.017 0.904 0.305 0.302 0.923
B4S1L2 0.353 0.001 0.486 0.340 0.033 0.447 0.328 0.030 0.408 0.543 0.427 0.310
B4S2L1 0.229 0.003 0.977 0.241 0.009 0.970 0.241 0.004 0.970 0.271 0.243 0.978
B4S2L2 0.348 0.002 0.613 0.273 0.012 0.528 0.280 0.015 0.541 0.499 0.409 0.500
B4S3L1 0.298 0.004 0.961 0.347 0.012 0.980 0.350 0.006 0.980 0.517 0.408 0.973
B4S3L2 0.387 0.002 0.638 0.377 0.020 0.619 0.386 0.020 0.616 0.377 0.378 0.639
B4S4L1 0.281 0.004 0.994 0.280 0.025 0.986 0.281 0.004 0.986 0.550 0.431 0.982
B4S4L2 0.396 0.001 0.752 0.318 0.018 0.688 0.326 0.043 0.686 0.505 0.449 0.719
B5S1L1 0.133 0.002 0.966 0.150 0.006 0.967 0.153 0.005 0.967 0.176 0.158 0.976
B5S1L2 0.273 0.001 0.545 0.195 0.008 0.397 0.198 0.007 0.395 0.502 0.376 0.291
B5S2L1 0.132 0.006 0.993 0.120 0.002 0.988 0.122 0.002 0.988 0.501 0.341 0.873
B5S2L2 0.303 0.002 0.672 0.178 0.007 0.551 0.178 0.007 0.522 0.501 0.411 0.555
B5S3L1 0.145 0.004 0.984 0.169 0.006 0.990 0.170 0.005 0.989 0.188 0.183 0.996
B5S3L2 0.306 0.001 0.668 0.211 0.004 0.542 0.214 0.006 0.550 0.503 0.400 0.520
B5S4L1 0.156 0.004 0.999 0.135 0.011 0.991 0.138 0.010 0.989 0.498 0.375 0.978
B5S4L2 0.360 0.001 0.794 0.210 0.020 0.621 0.203 0.003 0.611 0.495 0.438 0.756

Note. Data Set Labels correspond to those in Table 1. BR = estimates of taxon base rate; GFI = goodness of fit index; BRM = mean of the two base rate estimates derived from the
L-Mode modes; BRC = base rate estimate derived from L-Mode classification of observations.

The Effect of Trichotomous Data on Taxometric Graphs

MAMBAC. Appendix B demonstrates that in the case of
three ordered classes, the values on the ordinate of the MAM-
BAC curve are determined by

(p1a
− p1b

)(ȳ1 − ȳ3) + (p2a
− p2b

)(ȳ2 − ȳ3), (2)

wherep1a
is the proportion of observations above the cut belong-

ing to the class with the highest mean, p2b
is the proportion of

observations below the cut belonging to the intermediate class,
ȳ3 is the mean score for observations in the class with the lowest
mean, and so forth.

This formula creates a more complicated situation than is true
in the two-class case. Low base rates for the extreme classes
tend to produce elevations in the graph near the endpoints. This
pattern is demonstrated in Figure 1. The rectangular distribu-
tion (B1: see Table 1 for data pattern labels) produced results
that are likely to be interpreted as evidence of a dichotomy,

though this pattern was washed out when loadings were large
(L2). As the base rates of the extreme classes declined, however,
the corresponding portion of the curve became more elevated
relative to the rest of the distribution. B4, which was mildly
skewed, produced results that at times could be interpreted as
evidence for a small taxon. The bell-shaped distributions, B2
and B3, produced graphs that were elevated at both endpoints,
a result that would be interpreted as strongly suggestive of di-
mensional structure according to standard MAMBAC practice.
B5, the most skewed distribution, produced results that would
be interpreted as dimensional.

MAXCOV and MAXEIG. Since they are closely related
statistical procedures, it is not surprising to find MAXCOV and
MAXEIG produced parallel results, and so will be discussed in
combination. According to Equation 1, if nuisance covariance is
negligible, variations in the covariance between y and z across
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FIGURE 2.—Sample MAXCOV plot for each data set. Labels correspond to those in Table 1.

window depend on

p1p2(ȳ1 − ȳ2)(z̄1 − z̄2) + p1p3(ȳ1 − ȳ3)(z̄1 − z̄3)

+p2p3(ȳ2 − ȳ3)(z̄2 − z̄3),

when there are three classes. Figures 2 and 3 demonstrate what
happens in those circumstances. When the distribution of the
classes is symmetrical and the separations between classes are
reasonably large, the curve will tend toward a bimodal M shape
(two convex curves and one concave curve), with the modes
indicating the windows in which p1 and p3 are at their relative
maxima. This pattern is unique to the trichotomous case. With
smaller separations, higher levels of nuisance covariation, or
more skewed distributions, however, the results instead tend to
be consistent with what one would expect for a dichotomous
construct.

Similarly, when there are three classes, the Bayesian prob-
abilities based on the assumption that two classes are present
ideally would form three clusters, reflecting observations where
there is consistent evidence across indicators of falling in the
taxon class, observations where there is consistent evidence
across indicators of falling in the complement class, and ob-
servations where results are mixed across indicators because
they belong to the intermediate class. In the case of the sym-

metrical distributions, the results tended to be consistent with
this expectation, though higher levels of nuisance covariation
and lower separations tended to cloud the picture (Figures 4
and 5). Even in those instances where the histogram suggested
three clusters, however, the results were problematic. First, the
frequencies for the three clusters (the Y -axis variable) were
consistently incorrect as estimates of the base rates for the three
classes. For example, in Figure 4 the actual base rates for data
set B2S1L1 were .20, .60, and .20. The probability of falling in
the lowest cluster correctly was estimated to be approximately
.20. The histogram instead suggested approximately 10% of the
data set fell in the intermediate cluster, while almost 70% were
included in the highest cluster. So the results cannot be used
directly to estimate the true base rate of a three-class data set.
Second, Waller and Meehl (1998, Figure 3.4) suggested a three-
clustered histogram potentially is interpretable as evidence of
nontaxonic data. This is the appropriate conclusion if the possi-
bility of a three-class structure has been ruled out, as is true of
their example, but it potentially is inaccurate if it has not.

L-Mode. In the case of three ordered classes, the smoothed
density plot of the standardized factor scores should demonstrate
three peaks. As demonstrated in Appendix C, those three modes
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FIGURE 3.—Sample MAXEIG plot for each data set. Labels correspond to those in Table 1.

are expected to occur at the following locations:

E (Mo1) = 1 − (p1 + .5p2)√
p1 + .25p2 − (p1 + .5p2)2

,

E (Mo2) = .5 − (p1 + .5p2)√
p1 + .25p2 − (p1 + .5p2)2

,

E (Mo3) = −(p1 + .5p2)√
p1 + .25p2 − (p1 + .5p2)2

,

although many factor score solutions will introduce bias into
these estimates.

Figure 6 provides the L-Mode graph for each data set. In
the best case, a pattern emerges revealing a “Halloween ghost”
with arms raised, reflecting three prominent modes. Even when
the results were not quite as clear, the pattern of three convex
curves interspersed with two concave curves tended to emerge
when the separations were high and the loadings were low. As
the separations were reduced and the nuisance covariation was
increased, the distributions became more bimodal, likely to be
interpreted as a dichotomous structure, and ultimately unimodal,
suggestive of dimensional structure.

The Interpretation of Trichotomous Data via Taxometric
Methods

Table 3 provides summative results for the graphs associated
with each data set. As described earlier, some graph shapes were
idiosyncratic to trichotomous data, so these were reported sepa-
rately. Histograms of Bayesian probabilities that produced three
clusters were included in this category, although prior practice
might have led researchers to interpret this outcome as consis-
tent with dimensional structure. Since the multiple graphs gen-
erated by MAMBAC, MAXCOV, and MAXEIG largely were
redundant, a single conclusion was drawn from each method to
simplify the discussion.

The literature suggests researchers approach decision making
in taxometric analysis several different ways. As the first taxo-
metric methods to be discussed in full monographs (Meehl &
Yonce, 1994, 1996), some studies have examined only MAM-
BAC and MAXCOV graphs (the Bayesian histogram was a later
addition to the latter). For 7 of 40 data sets, the outcomes would
have led the researcher to conclude that the data reflect a di-
chotomous structure, while 2 data sets supported a dimensional
interpretation. In 11 cases the results for MAXCOV were in-
consistent with either interpretation, while the two methods led
to different conclusions in the remaining 20 data sets.

The results were more troubling when the full range of graph-
ical outcomes is considered. If agreement among at least 5 of
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FIGURE 4.—Distribution of MAXCOV Bayesian posterior probabilities for each data set. Labels correspond to those in Table 1.

the 6 sets of outcomes is taken as a standard for a consistent
outcome, 14 out of 40 data sets produced consistent support for
a dichotomous interpretation, while 2 supported a dimensional
interpretation. Some data sets consistently produced patterns
that did not meet with expectations for either dimensional or
dichotomous structure. Even if we set the standard for conver-
gence at four outcomes (since there was no MAMBAC pattern
idiosyncratic to trichotomous data), however, only 5 data sets
produced consistent evidence of trichotomous structure.

In those cases where the graphical results might have been
interpreted as evidence of dichotomous structure, the statisti-
cal outcomes in Table 2 also tended to be consistent with that
interpretation. This is not surprising, since those estimates are
derived from the graphs. For example, all taxometric methods
except L-Mode produced graphs for data set B1S2L1 that were
consistently supportive of dichotomous structure. Furthermore,
the MAMBAC, MAXCOV, and MAXEIG graphs all suggested
the base rate of the two classes would be approximately equal.
According to Table 2, there was relatively little variability in
taxon base rate estimates across or within taxometric meth-
ods, all converging on a value around .40. Furthermore, all
four GFI values exceeded .90 by a substantial amount. In cases
where the various graphical results converge on one interpre-
tation, the statistical outcomes simply tend to reinforce that
interpretation.

From both perspectives, the majority of data sets produced
inconsistent results or results that were idiosyncratic to trichoto-
mous data. It is important to consider, however, how such evi-
dence likely is to be used in current practice. It was noted ear-
lier that the Bayesian histograms identifying three clear clusters
probably would be interpreted as evidence of dimensional struc-
ture. This example reflects a problem with current practice in
taxometric analysis. Based on simulation studies restricted to di-
mensional and dichotomous data, taxometric researchers tend to
treat these as the only two possible options. One consequence of
this practice is the tendency to use the hypothesis of dimensional
structure as if it were a null hypothesis that can be rejected only
if there is consistent evidence of dichotomous structure (Ruscio
& Ruscio, 2004a). As a result, outcomes that vary between sup-
porting a dichotomous and dimensional interpretation are likely
to be treated as evidence of dimensional structure. In the case
where patterns consistently emerge that are idiosyncratic to tri-
chotomous data, the failure to consider other structures might
lead the researcher to decide not to pursue publication at all.

In summary, the application of current taxometric methods
to trichotomous data resulted in either inconsistent outcomes or
outcomes supportive of trichotomous structure in the majority of
data sets. Currently, the former finding may well be interpreted
as evidence of dimensional structure, while the latter simply
may lead the researcher to give up the project completely. In
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FIGURE 5.—Distribution of MAXEIG Bayesian posterior probabilities for each data set. Labels correspond to those in Table 1.

a number of data sets, the results consistently supported the
conclusion that the data were dichotomous or dimensional. In
all cases, current practice in taxometric research would lead the
researcher to an incorrect or unfortunate conclusion.

Alternative Analyses

As noted earlier, the three methods for evaluating class struc-
ture that were available through SAS (CCC, pseudo-F , and
pseudo-t2) do not always converge, so it has been recommended
that they be used in conjunction with one another to draw a
conclusion about structure. At least two procedures offered ev-
idence of three true clusters in 19 of the data sets. Accuracy
was greater in symmetrical distributions: 15 out of 24 distribu-
tions were correctly identified as having three clusters, while
only 4 of 16 skewed distributions were. The degree of nuisance
covariation seemed less of a factor: 11 of 20 data sets with
small factor loadings and 8 out of 20 with large loadings were
correctly identified.

The Tonidandel and Overall (2004) procedure, which is the
most recently introduced alternative, performed poorly with
the present simulations. Only the rectangular data sets with
small loadings were identified correctly as including three data
clusters. In all other cases the results suggested dimensional
structure.

The most effective method proved to be MCLUST, which cor-
rectly identified 26 of the data sets as consisting of three classes.
Nuisance covariation seemed more problematic for MCLUST
than for the SAS cluster-analytic methods: 18 out of 20 data
sets with factor loadings of .001 were correctly identified, but
only 8 of 20 data sets with loadings of .70 were. The only two
cases where a data set with small loadings was not correctly
identified occurred in the most skewed sample when at least one
separation was set to 1.25.

Although none of the three approaches emerged as a “gold
standard” for the presence of trichotomous structure, a com-
bination of the three SAS cluster-analytic options for drawing
inferences about structure and the MCLUST package functioned
best. If the data were assumed to be trichotomous on the basis of
either MCLUST or the SAS procedures suggesting three-class
structure, then 30 out of 40 data sets correctly were identified.
Of course, the present study cannot address what the false pos-
itive rate for this strategy would be if the sample included other
structures beside trichotomous data.

DISCUSSION

Taxometric analysis was developed specifically to differenti-
ate between dimensional and dichotomous structure. When the
data are limited to these two options, taxometric methods seem
to perform quite well; in fact, evidence suggests it has several
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FIGURE 6.—L-Mode plot for each data set. Labels correspond to those in Table 1.

advantages over alternative methods such as cluster analysis and
finite mixture models and often produces more accurate results
(Ruscio et al., 2006).

These two options, however, do not exhaust the universe of
possible data structures. The present study explored what hap-
pens when researchers inadvertently use taxometric methods
when the construct they are investigating consists of three or-
dered classes and the indicators selected are sensitive to both
categorical distinctions. The results suggest it would not be un-
usual for researchers using current standards for the interpreta-
tion of taxometric methods to conclude incorrectly that the data
are dichotomous or dimensional. Alternatively, the researcher
might conclude the results are uninterpretable, when in fact they
suggest a more complex structure to the data.

It was stated earlier that there is no way to know how fre-
quently psychologists interested in latent structure actually are
dealing with ordinal polytomous data, and with manifest in-
dicators that are sensitive to each qualitative distinction. It is
therefore unclear to what extent this is an important threat to
statistical conclusion validity for researchers interested in using
taxometric methods to detect the true structure of psychosocial
constructs. Even so, the present findings should raise concern
about the use of taxometric methods when the possibility of
polytomous structure exists.

Several recommendations emerge from these findings.
Methodological commentaries on taxometric methods regularly
recommend their use only when there is sufficient reason to con-
sider the issue of dimensional versus categorical latent structure
is an important one for the construct of interest (Lenzenweger,
2004; Ruscio et al., 2006). The results of the present study would
suggest even further reflection is necessary about the potential
for polytomous structure before a researcher uses taxometric
methods. If there is a reasonable possibility of three or even
more classes given the measures and population under investi-
gation, it would be best to think twice before relying solely or
primarily on taxometric methods.

Second, the risk of including more than two classes is likely
to be smaller if the population is relatively homogeneous. Sim-
ilarly, the risk of using measures that are sensitive to more than
one qualitative difference is likely to be lower when measures
reflect the full network of subdomains associated with the target
construct. Earlier in the article it was suggested that research
finds the schizotypal dimension may encompass three to four
classes. This finding was only possible because the samples in-
vovled spanned the spectrum from normal to negative symptom
schizophrenia. It also depended on the use of indicators specif-
ically reflective of negative symptoms. As the sample becomes
more homogeneous, or the indicators become more diverse,
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TABLE 3.—Results from graphical analyses.

MAXCOV MAXEIG Totals

Label MAMBAC Graphs Bayes Graphs Bayes L-Mode Dim Dich Other

B1S1L1 Dich Other Dich Other Other Other 0 2 4
B1S1L2 Dim Other Other Other Other Other 1 0 5
B1S2L1 Dich Dich Dich Dich Dich Other 0 5 1
B1S2L2 Dim Dich Dich Dich Dich Dich 1 5 0
B1S3L1 Dich Dich Dich Dich Dich Other 0 5 1
B1S3L2 Dim Dich Dich Dich Dich Dich 1 5 0
B1S4L1 Dich Dich Other Dich Other Other 0 3 3
B1S4L2 Dim Dich Other Dich Other Dim 2 2 2
B2S1L1 Dim Other Other Other Other Other 1 0 5
B2S1L2 Dim Other Dim Other Dich Dim 3 1 2
B2S2L1 Dim Other Dich Other Dich Dich 1 3 2
B2S2L2 Dim Dich Other Dich Other Dim 2 2 2
B2S3L1 Dim Other Dich Other Dich Dich 1 3 2
B2S3L2 Dim Dich Dich Dich Dich Dim 2 4 0
B2S4L1 Dim Other Dim Other Other Dim 3 0 3
B2S4L2 Dim Dim Other Dim Other Dim 4 0 2
B3S1L1 Dim Other Other Other Dich Other 1 1 4
B3S1L2 Dim Other Dich Other Other Dim 2 1 3
B3S2L1 Dim Other Other Other Other Dich 1 1 4
B3S2L2 Dim Dich Other Dich Other Dim 2 2 2
B3S3L1 Dim Dich Other Other Other Dich 1 2 3
B3S3L2 Dim Dich Other Dich Other Dim 2 2 2
B3S4L1 Dim Other Dich Other Dich Dim 2 2 2
B3S4L2 Dim Dim Dim Dim Other Dim 5 0 1
B4S1L1 Dich Dich Dich Dich Dich Other 0 5 1
B4S1L2 Dim Dich Dich Dich Dich Dich 1 5 0
B4S2L1 Dich Dich Dich Dich Dich Dich 0 6 0
B4S2L2 Dim Dich Dich Dich Dich Dich 1 5 0
B4S3L1 Dich Dich Dich Dich Dich Other 0 5 1
B4S3L2 Dim Dich Dich Dich Dich Dich 1 5 0
B4S4L1 Dich Dich Dich Dich Dich Dich 0 6 0
B4S4L2 Dim Dich Dich Dich Dich Dim 2 4 0
B5S1L1 Dim Dich Dich Dich Dich Other 1 4 1
B5S1L2 Dim Dich Other Dich Other Dich 1 3 2
B5S2L1 Dim Dich Dich Dich Dich Dich 1 5 0
B5S2L2 Dim Dich Other Dich Other Dich 1 3 2
B5S3L1 Dim Dich Dich Dich Dich Dich 1 5 0
B5S3L2 Dim Dich Other Dich Other Dim 2 2 2
B5S4L1 Dim Dich Dich Dich Dich Dich 1 5 0
B5S4L2 Dim Dich Other Dich Other Dim 2 2 2

Note. Data Set Labels correspond to those in Table 1. Dim = likely to be interpreted as supportive of dimensional structure, Dich = likely to be interpreted as supportive of taxonic
structure, Other = the pattern is idiosyncratic to three-class data.

the two conditions underlying the simulations presented in this
study (polytomous structure and indicators sensitive to all dis-
criminations) become less likely.

Third, many researchers have relied on one to three sets of
graphical taxometric outputs. The present results suggest the
value of using as many taxometric methods as are available.
Ideally, data consisting of k classes would produce an L-Mode
graph with k convex curves, histograms of Bayesian poste-
rior probabilities demonstrating k clusters, and MAXCOV and
MAXEIG graphs demonstrating k – 1 convex curves. In fact, the
present results suggest that even one of these outcomes should
lead the researcher to consider seriously the possibility of k-class
structure.

Fourth, one might conclude from these results that researchers
interested in detecting even a dichotomous structure would be
better off avoiding the use of taxometric methods altogether,
but this is an undesirable conclusion. Taxometric methods con-
sistently have been found to be more accurate at distinguish-
ing between dichotomous and dimensional data than alterna-
tives such as cluster analysis and mixture models (e.g., Cle-

land et al., 2000; Waller & Meehl, 1998), and the latter tend
to have more requirements in terms of the population distri-
bution. Furthermore, the variety of consistency tests that have
been developed for use in taxometric analysis is unparalleled
in statistical practice. Finally, the present results suggest no
method provides a gold standard for detecting polytomous
structure.

A better alternative would suggest expanding the concept
of consistency tests to encompass nontaxometric alternatives.
Convergence across multiple statistical models clearly would
present a stronger case for whatever conclusions are appropriate.
That being said, the likelihood of convergence across statistical
methods is not that great because they approach the detection of
data structure from very different perspectives. While taxomet-
ric analysis requires that each indicator be independently sen-
sitive to the categorical discrimination, cluster analysis allows
for the possibility that some distinctions are based on combi-
nations of indicators. Cluster analysis and mixture models treat
the discrimination of dimensional from class models as sec-
ondary to the issue of determining the number of classes. Where
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Tonidandel and Overall (2004) tend to select more over less
complex models, the reverse is true for MCLUST. Given these
differences, lack of convergence between alternative approaches
to detecting structure may be the norm rather than the excep-
tion. The issue of how best to identify data structure remains an
unresolved issue.

Finally, although the purpose of this study was to raise caution
about the use of taxometric methods in circumstances where the
construct is neither dichotomous nor dimensional, it is reason-
able to ask whether it would be possible to develop generalized
versions of the taxometric methods that are relevant in cases
of more than two classes. This would be a potentially valu-
able addition to the current stable of statistical methods. As the
preceding makes clear, however, doing so would require sub-
stantial revision of both the formalism and the methodology
underlying taxometric methods. In the meantime, researchers
should be more thoughtful about whether taxometric methods
offer an appropriate statistical approach, and whether there are
other conclusions possible besides the two typically considered
in relation to taxometric analyses. Here, as in all circumstances,
Meehl (1999, p. 172) was correct in stating that “no statistic is
self-interpreting.”
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APPENDIX A
Derivation of the Generalized General Covariance
Mixture Theorem

The formula for the covariance of two variables equals:

cov(yz) = �(y − ȳ)(z − z̄)

N

= (yz) − (ȳ)(z̄).

That is, the covariance equals the difference between the mean
cross product and the product of the means. In the k-class case,
the terms of this second equation can be restated as follows:

(yz) = p1(yz)1 + p2(yz)2 + . . . pk(yz)k,

ȳ = p1ȳ1 + p2ȳ2 + . . . pkȳk,

z̄ = p1z̄1 + p2z̄2 + . . . pkz̄k.

The generalization of the General Covariance Mixture Theorem
to the polytomous case indicates that the covariance of two
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indicators of a common taxonic construct is expected to equal
the following:

cov(yz) = p1(yz)1 + p2(yz)2 + . . . pk(yz)k − (p1ȳ1 + p2ȳ2

+ . . . pkȳk)(p1z̄1 + p2z̄2 + . . . pkz̄k)

= p1(yz)1 + p2(yz)2 + . . . pk(yz)k

−

 k∑

i

p2
i ȳi z̄i +

k∑
i �=

k∑
j

pipj ȳi z̄j




= p1(yz)1 + p2(yz)2 + . . . pk(yz)k

+
k∑
i

(
pi − pi − p2

i

)
ȳi z̄i −

k∑
i �=

k∑
j

pipj ȳi z̄j

= p1(yz)1 − p1(ȳ1)(z̄1) + p2(yz)2 − p2(ȳ2)(z̄2)

+ . . . pk(yz)k − pk(ȳk)(z̄k) +
k∑
i

pi(1 − pi)ȳi z̄i

−
k∑
i �=

k∑
j

pipj ȳi z̄j

= p1cov(yz)1 + p2cov(yz)2 + . . . pkcov(yz)k

+
k∑
i �=

k∑
j

pipj ȳi z̄i −
k∑
i �=

k∑
j

pipj ȳi z̄j

=
k∑
i

picov(yz)i +
k∑
i �=

k∑
j

(pipj ȳi z̄i − pipj ȳi z̄j

−pjpiȳj z̄i + pjpiȳj z̄j )

=
k∑
i

picov(yz)i

+
k∑
j <

k∑
i

pipj (ȳi − ȳj )(z̄i − z̄j ).

Since the variance of a variable is its covariance with itself,
the expected variance for variable y is

var(y) = 1 +
k∑
j <

k∑
i

pipj (ȳi − ȳj )2,

and the expected correlation between y and z is given by

ryz = cov(yz)√
var(y)var(z)

=

k∑
i

picov(yz)i +
k∑
j <

k∑
i

pipj (ȳi − ȳj )(z̄i − z̄j )

√√√√[
1+

k∑
j <

k∑
i

pipj (ȳi − ȳj )2

][
1+

k∑
j <

k∑
i

pipj (z̄i − z̄j )2

] .

APPENDIX B
Determination of MAMBAC Mean Differences in the
Trichotomous Case

If output variable y reflects membership in three ordered
classes, then the mean above (ȳa) and below (ȳb) the cut will
equal

ȳa = p1a
ȳ1 + p2a

ȳ2 + p3a
ȳ3,

ȳb = p1b
ȳ1 + p2b

ȳ2 + p3b
ȳ3,

where, for example, ȳ1 is the mean of class 1 (the class with
the highest mean), and p1a

is the probability of membership
in class 1 among those above the cut. For any cut on the input
variable, the difference between the means above and below
the cut, therefore, equals

ȳa − ȳb = p1a
ȳ1 + p2a

ȳ2 + p3a
ȳ3

−(p1b
ȳ1 + p2b

ȳ2 + p3b
ȳ3)

= p1a
ȳ1 + p2a

ȳ2 + (1 − p1a
− p2a

)ȳ3

−p1b
ȳ1 − p2b

ȳ2 − (1 − p1b
− p2b

)ȳ3

= p1a
ȳ1 + p2a

ȳ2 + ȳ3 − p1a
ȳ3 − p2a

ȳ3

−p1b
ȳ1 − p2b

ȳ2 − ȳ3 + p1b
ȳ3 + p2b

ȳ3

= (p1a
− p1b

)(ȳ1 − ȳ3) + (p2a
− p2b

)(ȳ2 − ȳ3).

APPENDIX C
Determination of Modal Standardized Factor Scores
in the Trichotomous Case

For the k-class case, the expected unstandardized factor score
for the different classes will be distributed equally through the
interval 0 to 1. As Waller and Meehl (1998) noted, when k = 2,
this is equivalent to dummy coding the classes as 0 and 1. In the
three-class case it results in the values 0, .5, and 1. The mean of
the factor scores is derived from

E(X) = 1p1 + .5p2 + 0p3

= p1 + .5p2,

and the variance is equal to

E(X2) − E(X)2 = 12p1 + .52p2 + 02p3 − (p1 + .5p2)2

= p1 + .25p2 − (p1 + .5p2)2.

Based on this information and the derivation provided in
Waller and Meehl (pp. 51–52), the three modes for the standard-
ized factor scores are expected to fall at the following locations:

E (Mo1) = 1 − (p1 + .5p2)√
p1 + .25p2 − (p1 + .5p2)2

,

E (Mo2) = .5 − (p1 + .5p2)√
p1 + .25p2 − (p1 + .5p2)2

,

E (Mo3) = −(p1 + .5p2)√
p1 + .25p2 − (p1 + .5p2)2

.


