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The taxometric method effectively distinguishes between dimensional (1-class) and taxonic (2-class)
latent structure, but there is virtually no information on how it responds to polytomous (3-class) latent
structure. A Monte Carlo analysis showed that the mean comparison curve fit index (CCFI; Ruscio,
Haslam, & Ruscio, 2006) obtained with 3 taxometric procedures—mean above minus below a cut
(MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode)—accurately
identified 1-class (dimensional) and 2-class (taxonic) samples and produced taxonic results when applied
to 3-class (polytomous) samples. From these results it is concluded that using the simulated data curve
approach and averaging across procedures is an effective way of distinguishing between dimensional
(1-class) and categorical (2 or more classes) latent structure.
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Interest in taxometrics has grown exponentially in recent years.
In just the last decade, there has been a 514% increase in the
number of peer-reviewed journal articles published on Meehl’s
taxometric method (Meehl & Golden, 1982).1 Moreover, taxomet-
ric procedures are no longer—if, in fact, they ever were—the
exclusive province of abnormal psychology. There is nothing in
Meehl’s (1992, 1995, 2004) writings or procedures to suggest that
his approach can be applied only to the psychopathological con-
ditions that inspired him to experiment with coherent cut kinetics
and develop the taxometric method. Researchers have accordingly
responded by expanding the scope of taxometric research and
applying taxometric procedures to a variety of nonpathological
conditions and assessment constructs. In fact, a quarter of the
peer-reviewed journal articles on taxometrics in the last 2 years
were published in three assessment journals: Psychological As-
sessment, Assessment, and Journal of Personality Assessment.
Taxometrics have been used to assess the latent structure of
perfectionism (Broman-Fulks, Hill, & Green, 2008), marital dis-
cord (Whisman, Beach, & Snyder, 2008), disgust sensitivity (Ola-
tunji & Broman-Fulks, 2007), and exaggerated health complaints
(Walters, Berry, Lanyon, & Murphy, 2009). It is all the more

important, then, that we understand the strengths and weaknesses
of this relatively new and increasingly popular approach for as-
sessing the latent structure of psychological constructs.

The taxometric method is designed to distinguish between con-
tinuous and discontinuous structure but can assess only one tax-
onic boundary at a time. Accordingly, problems may arise when
polytomous (three or more ordered classes) constructs are evalu-
ated with the taxometric method. In the assessment field there are
several plausible polytomous constructs that could potentially
work their way into a taxometric analysis and give false or mis-
leading results. Consider, for example, Moffitt’s (1993) life-
course-persistent/adolescence-limited/nondelinquent taxonomy.
Assuming that this putative three-class typology exists, it could
have a profound effect on taxometric research conducted on crim-
inal justice or developmental psychopathology topics. Depending
on whether polytomous constructs yield taxonic, dimensional, or
ambiguous results they could produce pseudodimensional,
pseudotaxonic, or indeterminate findings in a study on delin-
quency. This is a situation that could be made even more compli-
cated by nonlinear and interactive forces that alter the latent
structure patterns of polytomous constructs on the basis various
sample or indicator characteristics. Major depression has generated
inconsistent results in several taxometric studies based, in part, on
sample (clinical vs. analogue) and indicator (self-report vs. rating
scale) variations (Beach & Amir, 2003; Ruscio, Ruscio, & Kean,
2004; Solomon, Ruscio, Seeley, & Lewinsohn, 2006). Perhaps

1 A search of the PsycINFO database on April 4, 2009 uncovered 36
peer-reviewed journal articles published between 2006 and 2008 in which
the terms taxometric or taxometrics were included in the title, abstract, or
keyword section, compared to seven peer-reviewed journal articles pub-
lished between 1996 and 1998.
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these inconsistent findings are the result of an underlying three-
class structure involving bipolar disorder, unipolar endogenous/
melancholic depression, and unipolar exogenous depressive disor-
ders.

McGrath (2008) recently subjected an ordered three-class con-
struct to taxometric analysis using a Monte Carlo design and
determined that in many cases false inferences of either dimen-
sional or taxonic latent structure were obtained. Across the 40
Monte Carlo scenarios included in the McGrath study, inconsis-
tency was the rule. Whereas the majority of mean above minus
below a cut (MAMBAC) curves suggested dimensional latent
structure, the majority of maximum covariance (MAXCOV) and
maximum eigenvalue (MAXEIG) curves showed signs of a tax-
onic peak. The latent mode factor analysis (L-Mode) curves, on the
other hand, were fairly evenly split between dimensional and
taxonic latent structure. The McGrath study was limited, however,
by a relatively restricted set of sample parameters and reliance on
procedures (i.e., visual inspection of curve shape, base rate con-
sistency, Bayesian probabilities, congruence between the observed
variance–covariance matrix and the anticipated taxonic variance–
covariance matrix as measured by the goodness-of-fit index) that
have performed poorly in Monte Carlo research (Haslam & Cle-
land, 2002; Ruscio, 2007).

Two inferential frameworks guide taxometric research. First,
there is the traditional method (Meehl, 1995, 2004; Meehl &
Yonce, 1994, 1996; Waller & Meehl, 1998) in which the primary
goal is the detection of taxonic structure. This approach treats
dimensional structure essentially as the null hypothesis, taxonic
structure as the alternative hypothesis, and failure to reject the null
hypothesis as evidence of nontaxonic structure. Then, there is the
competing hypotheses approach, which treats taxonic and dimen-
sional latent structure as equally viable possibilities and bases its
conclusions on the relative fit of the research data to the two
models (Ruscio & Kaczetow, 2009; Ruscio, Ruscio, & Meron,
2007). The former approach would tend to treat indeterminate
results as evidence of dimensional structure, so that polytomous
data should tend to support the null hypothesis. Any one of three
possibilities, however, might be consistent with the views of
someone affiliated with the competing hypotheses approach. First,
polytomous constructs could be interpreted as evidence of dimen-
sional structure (De Boeck, Wilson, & Acton, 2005), perhaps
because multiple categories are interpreted as points along a di-
mension. Second, polytomous constructs could produce category-
like taxometric results (De Boeck et al., 2005) given the taxometric
procedure’s sensitivity to taxonic boundaries, even when there is
more than one. Finally, polytomous constructs could produce
ambiguous taxometric results to the extent that they fit neither the
taxonic nor dimensional models.

The comparison curve approach has recently emerged as an
important tool for decision-making from the competing hypotheses
perspective on taxometric analysis. The relative fit between an
observed data curve and simulated data curves derived using
taxonic and dimensional structure is quantified in the comparison
curve fit index (CCFI; Ruscio, Haslam, & Ruscio, 2006). CCFI
scores range from 0 to 1, with scores above .50 indicating better fit
between the data curve and simulated taxonic curve and scores
below .50 indicating better fit between the data curve and simu-
lated dimensional curve. The CCFI can be calculated for all three
primary taxometric procedures (MAMBAC, MAXCOV/MAXEIG,

and L-Mode) and the results averaged (Ruscio & Kaczetow, 2009;
Ruscio et al., 2007). Ruscio, Walters, Marcus, and Kaczetow
(2010) recommended that taxometric researchers use an indeter-
minate category, either .45 to .55 or .40 to .60, to avoid interpreting
ambiguous results as evidence of a taxon or dimension. Use of an
indeterminate category improved the accuracy of the mean CCFI
from 98.0% to 99.4% (.45 to .55 indeterminate) and 99.9% (.40 to
.60 indeterminate) but at the cost of 5% (.45 to .55 indeterminate)
to 14% (.40 to .60 indeterminate) unclassified cases (Ruscio et al.,
2010). The CCFI is the most empirically supported objective
measure of latent structure currently available for use with the
taxometric method. As such, its use should make it possible to
determine whether polytomous constructs generate taxonic, di-
mensional, or indeterminate results.

The principal goal of this study was to examine the effect of a
three-class ordered polytomous construct on an objective estimate
of latent structure (CCFI) measured using three different taxomet-
ric procedures (MAMBAC, MAXCOV, and L-Mode) for the
purpose of determining what to expect if polytomous (three or
more classes) data are unintentionally entered into a taxometric
analysis. To do this, a large Monte Carlo analysis was performed
using three latent structures: a one-class (dimensional) condition, a
two-class (taxonic) condition, and a three-class (polytomous) con-
dition. From this point forward, dimensional, taxonic, and polyto-
mous structure are referred to as one-class, two-class, and three-
class, respectively. It was hypothesized that the CCFI would
consistently fall below .50 (single threshold), .45 (narrow dual
thresholds), and .40 (broad dual thresholds) in the one-class sam-
ples and consistently rise above .50 (single threshold), .55 (narrow
dual thresholds), and .60 (broad dual thresholds) in the two-class
samples. From the mixed and inconsistent results obtained by
McGrath (2008) it was possible that three-class samples would
produce ambiguous CCFI results (.45 to .55 or .40 to .60), although
values consistent with one-class or two-class structure could also
arise depending on certain characteristics of the local maxima that
sometimes emerge in the distributions generated by taxometric
procedures. Assuming that the polytomous samples produce con-
sistent CCFI findings, a secondary objective of this study was to
determine whether it is possible to distinguish between three-class
samples and samples with genuine two-class (in the event three-
class data yield taxonic outcomes), genuine one-class (in the event
three-class data yield dimensional outcomes), or genuine indeter-
minate (in the event three-class data yield indeterminate outcomes)
structure.

Method

Dataset Generation

All datasets were created using the iterative algorithm described by
Ruscio and Kaczetow (2008), which can be used to produce datasets
that vary in their sample size, the number of indicators, the target
correlation between the indicators, the asymmetry in the indicator
distributions, and the relative weighting of the tails of the distri-
butions. This algorithm was used to form one-class (dimensional),
two-class (taxonic), and three-class (polytomous) datasets for this
study. Parameters for the datasets were randomly sampled from
uniform distributions for sample size (N � 300–1,000), asymme-
try (g � .00–.30), and tail weight (h � .00–.15).
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Discontinuous datasets were generated by creating two (for
two-class) or three (for three-class) subsamples such that the total
N across subsamples matched the randomly selected value for the
dataset. Additional parameters were based on uniform random
distributions for the base rate used for the two- and three-class
groups (two-class: p � .10–.50; three-class: P1 � P2 � .10–.33),
mean separation between adjoining classes (d � 1.25–2.00), level
of within-subsample correlation (rwg � .00–.30), and the taxon:
complement variance ratio (VR � 1–4, integers only). Two-class
datasets were generated by combining the two subsamples after
setting the mean for the taxon subsample to achieve the desired d
value when compared with the complement subsample and in-
creasing the variance of the taxon group to match VR. Three-class
datasets were generated by increasing the mean for the first taxon
subsample to achieve the desired d value when compared with the
complement subsample, setting the mean of the second taxon
subsample to achieve twice the desired d value, and setting the
variance of both taxon groups to equal VR.

The one-class dataset was created using some of the same
parameters as the two- and three-class datasets with the exceptions
being those that are irrelevant to the construction of one-class
samples (i.e., P, d, r, and VR). In their place correlations between
indicators were randomly sampled from a range of values (rxy �
.10–.65). Crossing the three structural conditions (one-class, two-
class, three-class) with three different numbers of indicators (four,
five, six) yielded nine different structure–indicator combinations.
Five hundred datasets were generated for each of the nine combi-
nations to produce 4,500 samples: 1,500 dimensional samples,
1,500 taxonic samples, and 1,500 polytomous samples.

A subgroup of samples was identified for follow-up analysis to
address the possibility that CCFI scores for the three-class dataset
might yield consistent dimensional or taxonic results. Every 20th
one-class (dimensional) sample, every 20th two-class (taxonic)
sample, and every 20th three-class (polytomous) sample was se-
lected for possible inclusion in the follow-up analyses. Hence, if
the three-class dataset produced consistent dimensional results, the
75 preselected one-class samples and the 75 preselected three-class
samples would be compared. Likewise, if the three-class dataset
produced consistent taxonic results, the 75 preselected two-class
samples and the 75 preselected three-class samples would be
compared.

Taxometric Analyses

Three taxometric procedures were included in the current inves-
tigation: mean above minus below a cut (MAMBAC; Meehl &
Yonce, 1994), maximum covariance (MAXCOV; Meehl & Yonce,
1996), and latent mode factor analysis (L-Mode; Waller & Meehl,
1998). Each procedure was calculated using Ruscio’s (2009b)
taxometric program for R language. MAMBAC arranges the input
indicator along the x-axis and then plots mean differences on the
output indicator for scores falling above and below a series of
evenly spaced cuts (50 in the present study). A peak or bump on
the MAMBAC curve suggests the presence of a taxon, whereas a
concave or dish-shaped curve is more consistent with dimensional
latent structure (Meehl & Yonce, 1994). Indicators were arranged
in all possible two-variable combinations to create 12 to 30 indi-
vidual curves, depending on the number of indicators, which were
then averaged and compared to simulated taxonic and dimensional

datasets. Cases were assigned to the taxon and complement groups
for the purpose of generating simulated data using the base rate
classification procedure built into the MAMBAC program.

After arranging the input indicator along the x-axis, MAXCOV
computes the covariance between two output indicators in equally
sized subgroups of the input indicator. Subgroups for this study
were formed using 50 sliding windows with 90% overlap. A peak
on the MAXCOV curve is normally indicative of a taxon, whereas
a relatively flat or nonpeaked curve suggests the presence of a
dimension (Meehl & Yonce, 1996). MAXCOV was implemented
using all possible indicator triplets (one indicator serving as the
input and two indicators serving as the output). With four to six
indicators, traditional MAXCOV will produce 12 to 60 individual
curves, although the mean curve was the principal focus of the
current investigation. Cases were assigned to the taxon and com-
plement groups using the base rate classification procedure.

L-Mode calculates scores on the first (and largest) principal
factor of the indicators and then plots the distribution of scores on
this single latent factor using Bartlett’s (1937) weighted least
squares method. A bimodal or double-humped L-Mode curve
generally suggests the presence of a taxon or discontinuity in the
distribution, whereas a unimodal or single-humped L-Mode curve
suggests a dimension or continuity in the distribution. That said,
taxa have been known to generate unimodal patterns, and bimodal
configurations have sometimes been observed in dimensional data
(Waller & Meehl, 1998). McGrath (2008) observed trimodal
L-Mode curves in several three-class samples in his small-scale
Monte Carlo analysis. The L-Mode procedure generates a taxon
base rate by averaging base rate estimates calculated from the
locations of the latent modes.

Simulated taxonic and dimensional datasets were created for
MAMBAC, MAXCOV, and L-Mode using a bootstrapping tech-
nique (10 simulated datasets for taxonic structure and 10 simulated
datasets for dimensional structure) that samples with replacement
and reproduces the unique distributional and correlational charac-
teristics of the data (Ruscio & Kaczetow, 2009; Ruscio et al.,
2007). The CCFI is the ratio of the root-mean-square residual
(RMSR) of fit between the data graph and simulated dimensional
graph to the sum of the RMSR of fit between the data graph and
simulated dimensional graph and the RMSR of fit between the data
graph and simulated taxonic graph: RMSRDim/(RMSRDim �
RMSRTax). Whereas CCFI values above .5 (to a maximum of 1)
are consistent with taxonic latent structure, values below .5 (to a
minimum of 0) are consistent with dimensional latent structure,
and values around .5 are ambiguous. The accuracy of the CCFI has
been established through Monte Carlo research (Ruscio, 2007;
Ruscio & Marcus, 2007; Ruscio et al., 2007, 2010; Walters &
Ruscio, 2009).

Results

Table 1 lists the percentages of one-class, two-class, and three-
class samples achieving CCFIs above and below .500 (first col-
umn), above .549 and below .450 (second column), and above .599
and below .400 (third column). Consistent with prior research
(Ruscio, 2007; Ruscio et al., 2007, 2010), the CCFIs of the
individual procedures achieved at least 85% accuracy without an
indeterminate category and at least 95% accuracy with an indeter-
minate category. The mean CCFI for the three procedures, as in
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past studies, attained an accuracy level in excess of 99%. Whereas
the one-class samples consistently achieved markedly lower CCFI
scores than samples with two- and three-class structure, the two-
class samples produced CCFI results that were largely indistin-
guishable from the CCFI results obtained with the three-class
samples.

Of the 75 three-class and 75 two-class samples preselected for
follow-up analysis, the 40 taxon-leaning (CCFI � .500) three-class
and 40 taxon-learning two-class samples with the largest Ns were
subjected to Ruscio and Ruscio’s (2004b) two-step procedure.
Using the base rate classification technique, each sample was
divided into a taxon and complement according to the mean taxon
base rate for MAMBAC, MAXCOV, and L-Mode.2 A follow-up
(Step 2) taxometric analysis was then performed on the taxonic
group from the original (Step 1) analysis, defined by ranking
individuals according to the size of their summed score across
indicators and assigning them to the taxon group until the propor-
tion of cases matched the mean base rate estimate. This summative
procedure has been found to be superior to other methods involv-
ing Bayesian classification of cases (Ruscio, 2009a). The results,
as outlined in Table 2, indicate good sensitivity (i.e., identifying
subtaxa in the three-class samples) but weak specificity (i.e.,
identifying subtaxa in the two-class samples as well).

Further analysis of the 80 two- and three-class samples revealed
a significant positive correlation between the true size of the first
step taxon (nt) and the accuracy of the mean CCFI (r � .29, p �
.01) and a significant negative correlation between the true-
estimated taxon base rate discrepancy (P � Pest) and the accuracy
of the mean CCFI (r � –.42, p � .001). There was also evidence
that inaccurate three-class second step results occurred more often
when the first step taxon base rate was underestimated (thus
creating a pseudodimension by excluding some of the lower scor-
ing taxon members from the Step 2 analysis), whereas inaccurate
two-class second step results occurred more often when the first

step taxon base rate was overestimated (thus creating a pseudot-
axon by including some of the higher scoring complement mem-
bers in the Step 2 analysis).

Three different base rate estimates were used to approximate the
Step 1 taxon base rate: a conservative estimate (MAXCOV), a
liberal estimate (L-Mode), and an intermediate estimate (average
of MAMBAC, MAXCOV, and L-Mode). Because the L-Mode
base rates were twice as high as the MAXCOV base rates, with the
averaged base rates falling in between, the estimated first step nt

(taxon sample size) was set at 250 or more for the MAXCOV base
rates, 500 or more for the L-Mode base rates, and 375 for the
average base rates. Analyses revealed that the CCFI was most
effective in identifying Step 2 taxa in three-class structures when
samples were selected using L-Mode base rates, that the CCFI was
most effective in identifying Step 2 dimensions in two-class struc-
tures when samples were selected using MAXCOV base rates, and
that the best overall results were achieved with the MAXCOV base
rates (see Table 3).

Qualitative analysis of taxometric results is ordinarily discour-
aged because it can be unreliable and overly subjective. An inter-
esting qualitative effect did surface, nonetheless, when the L-Mode
curves were visually inspected. A pattern of three convex curves
with deflection downward on either side separated by two concave
curves with deflection upward on either side was observed in
several curves. This trimodal pattern, referred to as the “Halloween
ghost,” was considered a marker of three-class structure by
McGrath (2008). Whereas 10 out of 40 (25%) three-class L-Mode
curves displayed this pattern, none of the 40 two-class L-Mode

2 In the full complement of 80 two- and three-class samples the mean
taxon base rate calculated across the three procedures (Pest) was more
similar, on average, to the actual taxon base rate than the base rate for any
single procedure or combination of two procedures.

Table 1
Proportion of CCFI Values in the Single and Dual Threshold Categories

Dataset

Single threshold Narrow dual threshold Broad dual threshold

�.500 �.500 �.450 .450–.549 �.550 �.400 .400–.599 �.600

MAMBAC
One-class 92.6 7.4 86.4 9.3 4.3 75.9 21.9 2.1
Two-class 0.3 99.7 0.1 0.1 99.7 0.1 0.5 99.5
Three-class 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0

MAXCOV
One-class 96.4 3.6 91.3 7.2 1.5 81.9 17.7 0.3
Two-class 7.4 92.6 4.2 8.4 87.4 1.6 16.7 81.7
Three-class 9.5 90.5 2.3 19.6 78.1 0.3 39.9 59.8

L-Mode
One-class 99.0 1.0 97.5 2.1 0.5 95.2 4.7 0.1
Two-class 13.7 86.3 7.1 18.1 74.7 3.3 40.7 56.0
Three-class 0.9 99.1 0.1 6.5 93.4 0.0 21.1 78.9

Mean
One-class 99.9 0.1 98.3 1.7 0.0 93.7 6.3 0.0
Two-class 1.0 99.0 0.5 3.2 96.3 0.1 8.9 90.9
Three-class 0.0 100.0 0.0 0.0 100.0 0.0 1.1 98.9

Note. Numbers directly under each heading are comparison curve fit index (CCFI) values. Numbers in the columns of the table are percentages; each
percentage is based on 1,500 samples. MAMBAC � mean above minus below a cut; MAXCOV � maximum covariance; L-Mode � latent mode factor
analysis; mean � average of the three procedures; one-class � dimensional; two-class � taxonic; three-class � polytomous.
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curves showed evidence of trimodality. A logistic regression anal-
ysis of the 40 three-class datasets revealed that the trimodal pattern
was most likely to occur when k, VR, d, and h were high and rwg

and g were low. One of the trimodal patterns obtained in the
current Monte Carlo study is reproduced in Figure 1.

Discussion

As the taxometric method becomes a fixture in psychological
assessment research it is imperative that we consider its strengths
and weaknesses and understand the boundaries of its overall util-
ity. A potential weakness of the taxometric method is that because
it was designed to differentiate between one-class continuous
(dimensional) distributions and two-class discontinuous (taxonic)
distributions it may be incapable of distinguishing between one-
and two-class distributions and constructs with multiple taxonic
boundaries. The approach taken by the taxometric method con-
trasts sharply with procedures like cluster analysis and finite
mixture modeling which detect latent structure in ways that allow
for more than two options. On the one hand, the taxometric
method’s ability to identify discontinuity in a distribution accu-
rately is one of its principal strengths. On the other hand, the

method’s inability to differentiate between two- and three-class
samples may be one of its principal weaknesses. This conclusion
may be premature, however, in that higher order analysis using
procedures like the two-step method introduced by Ruscio and
Ruscio (2004b) may have value in taxometrically distinguishing
between two- and three-class constructs, although the practical
utility of the procedure still needs to be determined.

The results of the two-step analyses revealed that whereas a
significant portion of taxa in the three-class samples partitioned
into subtaxa during the second step, so did a sizeable portion of the
two-class samples. When a conservative MAXCOV-generated es-
timate of the first step taxon base rate (nt) was employed, the
CCFI’s ability to identify two-class structure improved signifi-
cantly. Of the three taxometric procedures examined in this study,
L-Mode appeared to generate the strongest Step 2 effect, both
qualitatively (one-quarter trimodal curves for three-class samples
vs. no trimodal curves for two-class samples) and quantitatively
(CCFI using the broad dual threshold criterion achieved 85%
accuracy in the 80-database sample). Datasets were dichotomized
according to the presence or absence of the Halloween ghost
pattern in the L-Mode curve, and a logistic regression was per-

Table 2
Results of a Step 2 Analysis of the Step 1 Taxonic Group in Three- and Two-Class Samples

Procedure

Three-class sample Two-class sample

�2M SD �.500 �.550 �.600 M SD �.500 �.550 �.600

MAMBAC .703 .180 82.5 86.1 (10.0) 94.4 (10.0) .494 .202 57.5 52.9 (15.0) 50.0 (25.0) .237
MAXCOV .652 .106 92.5 94.8 (12.5) 96.7 (25.0) .549 .169 72.5 73.5 (15.0) 70.0 (25.0) .120
L-Mode .634 .134 77.5 90.0 (25.0) 100.0 (42.5) .459 .119 30.0 42.8 (22.5) 30.8 (67.5) .331
Mean CCFI .663 .114 87.5 94.3 (12.5) 96.8 (22.5) .501 .137 60.0 52.0 (37.5) 55.0 (50.0) .302

Note. MAMBAC � mean above minus below a cut; MAXCOV � maximum covariance; L-Mode � latent mode factor analysis; Mean CCFI � average
of three procedures for the comparison curve fit index; �.500 � proportion of samples with CCFI scores equal to or greater than .500 (single threshold
criterion); �.550 � proportion of samples out of all nonambiguous samples with CCFI scores equal to or greater than .550 (narrow dual threshold criterion;
with number in parentheses representing the proportion of cases where the CCFI fell between .450 and .549); �.600 � proportion of three-class samples
out of all nonambiguous samples with CCFI scores equal to or greater than .600 (broad dual threshold criterion; with number in parentheses representing
the proportion of cases where the CCFI fell between .400 and .599); �2 � eta-squared for structure (two-class vs. three-class) in a two-way analysis of
variance with indicators as the other variable (eta-squared values for indicator and for the Indicator � Structure interaction were all �.03); each structure
is represented by the 40 two-class and 40 three-class taxon-leaning (mean CCFI � .500) samples with the largest sample sizes in a group of 75 randomly
selected datasets representing each structure.

Table 3
Results of Step 2 Analyses on the Mean CCFI Using MAXCOV, L-Mode, and Averaged Base Rate-Defined Samples

Procedure

Three-class sample Two-class sample

N M SD �.500 �.550 �.600 N M SD �.500 �.550 �.600

MAXCOV BR � 250 22 .638 .134 77.3 88.8 (18.2) 92.8 (36.4) 12 .374 .140 25.0 20.0 (16.7) 11.1 (25.0)
L-Mode BR � 500 19 .711 .096 94.7 100.0 (5.3) 100.0 (10.5) 14 .503 .127 57.1 44.4 (35.7) 50.0 (57.1)
Average BR � 375 15 .681 .125 86.7 100.0 (20.0) 100.0 (26.7) 3 .496 .133 66.7 50.0 (33.3) 50.0 (33.3)

Note. MAXCOV BR � 250 � estimated taxon base rate for maximum covariance indicates a taxon sample size (nt) of 250 cases or more; L-Mode BR �
500 � estimated taxon base rate for latent mode factor analysis indicates an nt of 500 cases or more; average BR � 350 � the averaged estimated taxon
base rate across the three procedures (mean above minus below a cut �MAMBAC	, MAXCOV, and L-Mode) indicates an nt of 350 cases or more; �.500 �
proportion of samples with comparison curve fit index (CCFI) scores equal to or greater than .500 (single threshold criterion); �.550 � proportion of
samples out of all nonambiguous samples with CCFI scores equal to or greater than .550 (narrow dual threshold criterion; with number in parentheses
representing the proportion of cases where the CCFI fell between .450 and .549); �.600 � proportion of three-class samples out of all nonambiguous
samples with CCFI scores equal to or greater than .600 (broad dual threshold criterion; with number in parentheses representing the proportion of cases
where the CCFI fell between .400 and .599); all CCFIs are averaged across the three procedures (MAMBAC, MAXCOV, L-Mode).
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formed using the parameters for the datasets as predictors. The
results indicated that the trimodal pattern was more likely to
emerge with more indicators, a higher ratio of the base rate for the
taxa versus complement classes, good between-group separation,
greater tail weight, a manageable level of within-group (nuisance)
covariance, and low indicator skew.

The question the current study sought to answer was whether the
taxometric method responds in a predictable fashion to constructs
with polytomous (three or more classes) latent structure. Previ-
ously, McGrath (2008) observed pseudotaxonic, pseudodimen-
sional, and indeterminate results in a Monte Carlo analysis of
three-class samples subjected to taxometric analysis, but the sta-
tistics used to evaluate the findings were problematic (see Haslam
& Cleland, 2002; Ruscio, 2007; Ruscio et al., 2006). In the current
Monte Carlo study, one-class, two-class, and three-class datasets
were analyzed with Ruscio’s (2007) comparison curve approach
and CCFI. The results revealed that the CCFI accurately identified
dimensional structure in the one-class datasets, accurately identi-
fied taxonic structure in the two-class datasets, and supported a
taxonic (two-class) conclusion in the three-class datasets. These
findings indicate that three-class polytomous constructs give rise
to taxonic CCFI results using Ruscio’s comparison curve ap-
proach. Hence, use of the CCFI in conjunction with an indetermi-
nate category can help researchers avoid mistaking three-class
polytomous constructs for one-class dimensional constructs, al-
though it may be less helpful in differentiating between two-class
taxonic and three-class polytomous constructs.

The current investigation illustrates the value of generating
simulated taxonic and dimensional data curves that reflect the
unique statistical characteristics of the indicators for use in assess-
ing the relative fit of the actual data curve, the results of which are
quantified in the CCFI. There are several advantages to the CCFI,
a number of which are highlighted in the current investigation.
First, the CCFI is an objective and highly accurate procedure
(Ruscio, 2007; Ruscio et al., 2010), in direct contrast to the more
subjective and less reliable approaches traditionally used to assess

taxometric data (i.e., base rate consistency, Bayesian probabilities,
curve shape). Second, because the CCFI is based on the simulated
curve approach, it is better able to handle nonnormal data than
traditional approaches to taxometric analysis. Third, the CCFI is
compatible with Meehl’s notion of consistency testing. Meehl
(1995, 2004) recommended that taxometrics be performed using
multiple nonredundant and quasi-independent procedures such as
MAMBAC, MAXCOV, and L-Mode. Consistency across different
taxometric procedures is consequently a precondition for conclud-
ing that a construct is dimensional or taxonic. The CCFI provides
an objective procedure for determining the consistency of results
using either a single threshold (�.500, �.500), narrow dual thresh-
old (�.450, �.550), or broad dual threshold (�.400, �.600)
criterion and has the added advantage of being amenable to aver-
aging. Results from the current study indicate that the narrow and
broad dual threshold models were equally effective in identifying
dimensional structure in the one-class dataset, taxonic structure in
the two-class dataset, and taxonic structure in the three-class
dataset.

As was previously mentioned, at least two different inferential
frameworks have been suggested for the taxometric method: the
traditional taxon-detection approach (Meehl, 1995, 2004; Meehl &
Yonce, 1994, 1996; Waller & Meehl, 1998) and the competing
hypotheses approach (Ruscio & Kaczetow, 2009; Ruscio et al.,
2007). In the taxon-detection approach dimensional results are
treated as error, noise, or the null hypothesis, whereas in the
competing hypotheses approach taxonic and dimensional latent
structure are construed as alternative hypotheses of equal weight
and importance. Even though the current study did not directly
compare these two inferential frameworks, the results seem to
provide greater support for the competing hypotheses approach
than for the taxon-detection approach (as does the possibility of
polytomous structure in general). The three-class polytomous sam-
ples fit the simulated taxonic model as well as the two-class
taxonic samples, and neither fit the dimensional model particularly
well. This is inconsistent with the taxon-detection approach be-
cause instead of being identified as nontaxonic (dimensional or
ambiguous), the three-class samples were “misidentified” (from
the standpoint of the taxon-detection model) as taxonic. The cur-
rent results appear to be more consistent with the view that
dimensional and categorical results reflect alternative structures
and that polytomous constructs, at least three-class ones, can be
classified as categorical. Because the CCFI with a dual threshold
criterion identifies polytomous constructs as taxonic, taxometric
researchers using the comparison curve approach can rest assured
that they are probably not working with a polytomous construct
when they get consistent dimensional results.

Taxometric research has important implications for research and
practice in psychological assessment, which is probably why the
procedure is so popular with researchers in the psychological
assessment field. Ruscio et al. (2006) emphasized that taxometric
findings can be helpful in selecting and constructing items for
various and sundry assessment procedures. A construct with a
taxonic or categorical latent structure is most efficiently assessed
with a relatively small number of highly focused items capable of
sorting cases into a few discrete categories. A dimensional con-
struct, by contrast, is best measured with a relatively large number
of diverse items that cover the entire range of the dimension rather
than dividing the distribution into mutually exclusive categories.

Figure 1. An L-Mode graph of a three-class sample with six indicators.

154 WALTERS, MCGRATH, AND KNIGHT



An equally important implication of taxometric research for the
field of psychological assessment is its use in determining the
construct validity of psychological test scores. The taxometric
method is designed to assess the latent structure of the construct
that underpins the psychological procedure rather than the latent
structure of the procedure itself. If a test designed to measure a
construct generally believed to be dimensional, such as intelli-
gence, produces ambiguous or taxonic results or a construct gen-
erally believed to be taxonic, such as gender, produces ambiguous
or dimensional results, this automatically brings the construct
integrity of this assessment procedure into question.

The principal limitation of the research described in this article
is the uncertain generalizability of the results to other contexts. The
Monte Carlo analyses were based on an algorithm created by
Ruscio and Kaczetow (2008) and the number of indicators, which
was the only parameter other than structure that was systemically
varied, comprised only three levels (four, five, and six). The latter
parameter restriction was introduced because a review of the
literature on taxometric analysis revealed that few studies used
more than four to six indicators. In addition, polytomous structure
was confined to a three-class typology and so it is uncertain
whether the taxonic CCFI results obtained with the three-class
samples in this study would generalize to polytomous constructs
composed of four or more categories. One possibility is that as the
number of categories increases the CCFI becomes less aligned
with the taxonic model and more aligned with the dimensional
model. In fact, it could even be argued that once we reach a certain
number of categories (e.g., eight to 10) there is little practical value
to be found in differentiating between dimensional and categorical
latent structure. Using taxometric results to guide development of
an assessment procedure for an eight-class categorical construct
may not differ that much from the taxometric guidelines used to
create an assessment procedure for a dimensional construct. For
practical reasons the eight categories would need to be ordered
quantitatively (otherwise, we would probably need to create eight
separate measures). This is similar to how a dimensional construct
is assessed at different points along its continuum.

Ruscio and Ruscio (2004a) have discussed the role of taxomet-
rics in a comprehensive program of structural research. They
recommended that for constructs with multiple taxonic boundaries
the taxometric method can be used to search for taxonic bound-
aries in a construct iteratively, with the process being repeated
within each class defined in the previous step. Given the tendency
of hierarchical cluster analysis and latent class/profile analysis to
overidentify the number of boundaries in a construct (McLachlan
& Peel, 2001), there is a need for a procedure that can identify
multiple taxonic boundaries and estimate the maximum number of
such boundaries. A two-step procedure, which can be extended to
a multistep procedure, has been advocated by Ruscio and Ruscio
(2004a, 2004b) for this very purpose. The two-step procedure
involves subjecting a taxon identified in a previous taxometric
analysis to further taxometric analysis to determine whether it
forms a dimension (two-class structure) or taxon (three-class struc-
ture). If a taxon is identified then a third taxometric analysis can be
performed to see whether it forms a dimension (three-class struc-
ture) or taxon (four-class structure). The results of the current
study indicate that the multistep procedure does a good job of
identifying taxonic structure but is much less effective in identi-
fying dimensional structure at the second step of the process.

Further analysis revealed the importance of an accurate base rate
estimate when using the two-step procedure, something that is not
under the researcher’s control. What is under the researcher’s
control is selection of the base rate estimate. To the extent that
overestimating the first step taxon base rate appears to have a more
deleterious effect on the CCFI’s ability to identify second step
dimensionality in two-class samples than underestimating the first
step taxon base rate has on the CCFI’s ability to identify second
step taxonicity in three-class samples, investigators may want to
use a conservative procedure like MAXCOV to estimate the taxon
base rate.

As the results of this and previous studies indicate, the CCFI is
effective in differentiating between dimensional (continuous) and
taxonic (discontinuous) latent structure. Results indicative of dis-
continuous structure, however, should not be taken as prima facie
evidence of two-class structure because the three-class samples in
the current study also achieved elevated CCFI scores. Hence, the
current results do not provide a definitive answer to the question of
whether taxometric analysis can be used to differentiate between
divergent categorical structures. Categorical results can be ex-
plored further with cluster analysis or latent class/profile analysis,
although as Ruscio et al. (2006) pointed out, each of these proce-
dures tends to overestimate the number of clusters or distinct
categories in a distribution and are not particularly adept at iden-
tifying taxonic boundaries. The two-step sequential process intro-
duced by Ruscio and Ruscio (2004b) has potential but requires a
relatively large taxonic subsample (nt) and an accurate or at least
a more conservative estimate of the first step taxon base rate to
operate efficiently for the purpose of distinguishing between dif-
ferent categorical structures. Trimodality in the L-Mode curve may
be exclusive to three-class constructs, but it occurred in only 25%
of the 40 three-class samples included in the two-step analyses and
in about 25% of the three-class samples included in the McGrath
(2008) study. Similar problems may arise when attempting to
identify the number of dimensions in a continuous construct. The
taxometric method and CCFI do a good job of answering Stage 1
questions (i.e., is the construct dimensional or categorical?). Now
we need a procedure or set of procedures that can answer Stage 2
questions (i.e., how many dimensions or categories are there?).
The future of research using latent structure procedures requires
that we identify and validate procedures for answering these im-
portant Stage 2 questions.
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